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Collaborative filtering aims at learning predictive models of user preferences, interests or behavior
from community data, that is, a database of available user preferences. In this article, we describe a
new family of model-based algorithms designed for this task. These algorithms rely on a statistical
modelling technique that introduces latent class variables in a mixture model setting to discover
user communities and prototypical interest profiles. We investigate several variations to deal with
discrete and continuous response variables as well as with different objective functions. The main
advantages of this technique over standard memory-based methods are higher accuracy, constant
time prediction, and an explicit and compact model representation. The latter can also be used to
mine for user communitites. The experimental evaluation shows that substantial improvements
in accucracy over existing methods and published results can be obtained.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering; I.5.3 [Pattern Recognition]: Clustering—algorithms

General Terms: Collaborative filtering, recommender systems, machine learning, mixture models,
latent semantic analysis

1. INTRODUCTION

Content-based filtering and retrieval builds on the fundamental assumption
that users are able to formulate queries that express their interests or infor-
mation needs in term of intrinsic features of the items sought. In some cases,
however, it may be difficult to identify suitable descriptors such as keywords,
topics, genres, etc. that can be used to accurately describe interests. Yet in other
cases, for example, in electronic commerce, users may be unaware or at least
inattentive of their interest. In both cases, one would like to predict user prefer-
ences and recommend items without requiring the user to explicitly formulate
a query.

Collaborative filtering is a technology that is complementray to content-
based filtering and that aims at learning predictive models of user preferences,
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interests or behavior from community data, that is, a database of available user
preferences. Ideally, additional user input or interaction beyond the profile gen-
erated from previous interactions and observations is not necessary. Up to now,
the dominant paradigm for performing collaborative filtering in recommender
systems has been based on nearest neighbor regression or memory-based tech-
niques. Virtually all first generation recommender systems have used the same
fundamental two-step approach of first identifying users that are similar to
some active user for which a recommendation has to be made, and then comput-
ing predictions and recommendations based on the preferences and judgments
of these similar or like-minded users. The latter includes [Goldberg et al. 1992],
the GroupLens (and MovieLens) project [Resnik et al. 1994; Konstan et al.
1997], Ringo [Shardanand and Maes 1995] as well as a number of commercial
systems, most notably the systems deployed at Amazon.com and CDNow.com.

Memory-based methods have reached this level of popularity, because they
are simple and intuitive on a conceptual level while avoiding the complica-
tions of a potentially expensive model-building stage. At the same time, they
are deemed sufficient for many real-world problems. Yet there are a number of
shortcomings, four of which we would like to point out here: (i) The accuracy
obtained by memory-based methods may be suboptimal. Since recommendation
accuracy is perhaps the most crucial factor from a user’s perspective, improv-
ing accuracy is very important for most recommendation systems. (ii) Since no
explicit statistical model is constructed, nothing is actually learned form the
available user profiles and no general insight is gained. Hence, memory-based
methods are only of limited use as data mining tools. (iii) Memory-based meth-
ods do not scale well in terms of their resource requirements (memory and
computer time), unless further approximations—like subsampling—are made.
(iv) It is difficult to systematically tailor memory-based algorithms to maximize
the objective associated with a specfic task.

This article deals with a model-based approach that addresses the above
shortcomings and (i) achieves higher prediction accuracies, (ii) compresses the
data into a compact statistical model that automatically identifies user com-
munities, (iii) enables to compute preference predictions in constant time, and
(iv) gives the system designer more flexibility in specifing the objectives of the
application.

Model-based techniques have been investigated before, most notably
Bayesian and non-Bayesian clustering techniques [Breese et al. 1998; Ungar
and Foster 1998; Basu et al. 1998; Chien and George 1999], Bayesian networks
[Breese et al. 1998], and dependency networks [Heckerman et al. 2000]. The
approach proposed in this paper is a generalization of a statistical technique
called probabilistic Latent Semantic Analysis (pLSA) [Hofmann 2001a] which
was originally developped in the context of information retrieval [Hofmann
1999]. It bears some similarity with clustering methods such as distributional
clustering [Pereira et al. 1993] in that latent variables for user communities are
introduced, yet the communities can be overlapping and users are not parti-
tioned into groups, not even probabilistically (cf. Hofmann and Puzicha [1999]).
In fact, the probabilistic latent semantic models are in many ways closer related
to dimension reduction methods and matrix decomposition techniques such as
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Singular Value Decomposition (SVD) and Principal Component Analysis (PCA),
which have been applied in information retrieval [Deerwester et al. 1990] as
well as in the context of recommender systems [Sarwar et al. 2000; Goldberg
et al. 2001; Canny 2002].

The main difference between our work and Bayesian or dependency networks
is the fact that the latter learn a dependency structure directly on the observ-
ables, while our approach is based on a latent cause model that introduces the
notion of user communities or groups of items. The main difference compared to
PCA and SVD-based dimension reduction methods is that pLSA offers a prob-
abilistic semantics and can build on statistical techniques for inference and
model selection. However, our approach shares with all of the above techniques
the assumption that predictions are computed in a “user-centric” view, whereas
some more recent work has investigated item-based recommendation methods
[Sarwar et al. 2001].

2. MODEL-BASED COLLABORATIVE FILTERING

2.1 Implicit and Explicit Ratings

The domains we consider consist of a set of persons or users U = {u1, . . . , un},
a set of items Y = { y1, . . . , ym} and a set of possible ratings V. We assume
observations are available for person/object pairs (u, y), where u ∈ U and y ∈ Y.
In the most basic case, an observation will just be the co-occurrence of u and y ,
representing events like “person u buys product y” or “person u clicks on link
y”, which is also sometimes called implicit preference data. Other cases may
also provide an explicit rating v ∈ V as part of an observation. In the simplest
case, this will be a binary response variable v ∈ {−1, 1}, modeling events like
“person x likes/dislikes object y”. In general, V may be discrete or continuous,
equipped with an ordinal or numerical (absolute) scale. For example, a five- or
six-star rating scale as commonly used in movie recommendation systems such
as MovieLens or EachMovie.

Rating data can be concisely summarized in table format as a n by m matrix
A, where each row will correspond to a user and each column to an item. In the
case of implicit ratings, each entry aij represents a count variable of how often
user ui has selected item item yj or, more generally, how many pairs (ui, yj )
have been observed. In the case of explicit ratings, each entry aij ∈ V ∪ {∅} will
either correspond to a rating, aij ∈ V or will be unobserved, aij = ∅. Notice that
the data matrix A will typically be sparse in the sense that only a small fraction
of pairs (u, y) are actually ever observed. Hence, the vast majority of entries aij
will be 0 (implicit ratings) or ∅ (explicit ratings).

2.2 Prediction Problems

We will consider two type of prediction problems. The first setting that we
call forced prediction involves predicting a preference value for a particular
item given the identity of the user, that is, one would like to learn a map-
ping g : U × Y → V. More generally, one may be interested in the condi-
tional probability P (v|u, y) that user u will rate item y with v. Based on the
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conditional probability one may also define a deterministic prediction function
by g (u, y) = arg maxv P (v|u, y). If v possesses a numerical scale, then it is more
appropriate to define g via the expected rating, g (u, y) = ∑

v∈V vP (v|u, y) or
g (u, y) = ∫

V v P (v|u, y) dv.1 We call this setting forced prediction, because it
mimics an experimental setup in which a user response is solicited for a partic-
ular item and the user has no choice on which item to vote. This is the relevant
prediction mode in scenarios in which an item is presented to a user as a rec-
ommendation and one is interested in anticipating the user’s response.

In the second setting, which we call free prediction, the item selection pro-
cess is part of the predictive model and the goal is to learn probabilities
P (v, y |u) in order to predict both, the selected item y and (optionally) the
associated rating v. By virtue of the chain rule, this can be rewritten as
P (v, y |u) = P (v| y , u)P ( y |u), thus decomposing the problem into the predic-
tion of the selected item (irrespective of the rating) and a prediction of the
rating conditioned on the (hypothetically) selected item. This mimics a sce-
nario in which the user is free to select an item of her or his choice and—in the
case of explicit ratings—also provides a rating for it. The free prediction case
is a generalization of what is commonly referred to as the “recommend” task.
i.e. selecting a set of items to present to the user.

In the forced prediction case, the user is presented with a particular item
and provides a rating for it. Here the selection of the item on which a user
vote or response is solicitated is part of the experimental design. In the free
prediction case, the user is in control of the item selection and one is interested
in prediciting both, what a user will select and (optionally) how s/he will rate
the item.

2.3 Loss and Risk Functions

Since we are pursuing a model-based approach to collaborative filtering, we
will assume the availability of an adequate loss function. A loss function L is a
function that quantifies how good or bad the predicition of a model is compared
to a true outcome. We will denote the (parameterized) model space by H and use
a generic parameter θ to refer to a particular model in H. Then, a loss function
can be formally defined as a function L : X ×H → � where X = U ×V×Y. Here
V is treated as void in the case of implicit ratings. Hence, for a given observa-
tion (u, v, y), a loss function L will assign a score to every hypothesis θ under
consideration. The smaller L((u, v, y), θ ), the more compatible θ is believed to
be with the observation.

In statistical inference, one often uses the (log-)likelihood as a criterion cor-
responding to a (negative) logarithmic loss

Llg1((u, v, y), θ ) = − log P (v|u, y ; θ ), or Llg2((u, v, y), θ ) = − log P (v, y |u; θ ). (1)

The first loss function in Eq. (1) is appropriate for the forced prediction scenario,
since it conditions on the selected item y , while the second one corresponds to
the free prediction mode in which y is part of the prediction.

1For notational convenience, P (v|u, y) denotes a probability mass function (discrete case) or a
conditional probability density function (continuous case) dependent on the context.
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Another popular choice for the case of discrete response variables and for
models that make deterministic predictions is the zero-one loss,

Lzo((u, v, y), θ ) = 1 − [[v = g (u, y ; θ )]], (2)

where [[·]] denotes the indicator function of the enclosed predicate. If the predic-
tion is correct, no loss is incurred, otherwise the loss is one. This loss function is
also commonly used in supervised classification or pattern recognition. It can
be generalized to the case of probabilistic models where one may define a loss
via the probability of making an incorrect prediction, that is, the probability of
error

Lpe((u, v, y), θ ) =
∑
v′ �=v

P (v′|u, y ; θ ) = 1 − P (v|u, y ; θ ) (3)

The logarithmic loss provides an upper bound on the probability of error, since

Lpe((u, y , v), θ ) = 1 − P (v|u, y ; θ ) ≤ 1 − log P (v|u, y ; θ )
= 1 + Llg1((u, y , v), θ ). (4)

The zero–one loss is sometimes difficult to optimize directly, because it is a
non-differentiable function of θ , in which case the use of the logarithmic loss
can be advantageous for computational reasons. In fact, in this article, we fo-
cus exclusively on the use of logarithmic loss functions, which can be optimized
(in approximation) with the well-known Expectation–Maximization (EM) algo-
rithm for the proposed latent class models.

For numeric response variables, it is more common to use a metric-based loss
function, for example, the absolute loss

Labs((u, v, y), θ ) = |v − g (u, y ; θ )| (5)

or the squared loss

Lsqr((u, v, y), θ ) = (v − g (u, y ; θ ))2 . (6)

These loss functions have been used extensively for evaluating the accuracy
of collaborative filtering methods, in particular memory-based methods, and
we will also use them in our experiments. For completeness, we would like to
mention the RankBoost method [Freund et al. 1998] which aims at minimizing
an upper bound on the ranking loss. The latter uses a purely ordinal scale for
the ratings and can be defined via the number of misordered item pairs.

A loss function scores models based on a single observation; however, we need
to specify how to combine data consisting of several observations. Put differ-
ently, we need a sampling model to specify under which distribution P (u, v, y)
we would like to minimize the loss. This is usually called a risk function or
functional, R(θ ) ≡ ∑u,v, y P (u, v, y)L((u, v, y); θ ), where part of the sum has to
be replaced by an integral in the case of continuous response variables v. A
typical choice is to minimize the empirical loss, that is,

Remp(θ ) = 1
N

∑
〈u,v, y〉

L((u, v, y), θ ), (7)
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where angular brackets under a summation symbol are used as a shorthand
notation to refer to all observation triplets and N denotes the total number
of observed triplets. However, in collaborative filtering, it is a conceivable al-
ternative to give the same weight to every user, irrespective of the number of
implicit or explicit ratings available for that user. If we denote by nu the number
of observation triplets for user u, then this would correspond to the normalized
empirical risk function

R̃emp(θ ) = 1
n

∑
u

Lu(θ ), Lu(θ ) = 1
nu

∑
〈u′,v, y〉:u′=u

L((u, v, y), θ ). (8)

The choice of a normalized vs. nonnormalized risk function depends on the
application. If we assume that users for which more data is available are more
important, in the sense that it is more likely that we will have to make pre-
dictions for them again, then the unnormalized risk function in Eq. (7) may
be more appropriate. Notice also that R̃emp may put a lot of weight on individual
observations, just because the data for some users may be sparse. Hence, we
expect the normalized risk function to be more susceptible to overfitting, which
has turned out to be disadvantageous in our experiments (cf. Section 5).

3. CO-OCCURRENCE LATENT SEMANTIC MODEL

3.1 Model Definition

We would like to discuss a simple model for co-occurrence data first, which
is known as probabilistic latent semantic analysis (pLSA) [Hofmann 2001a;
Hofmann 1999]. This can be thought of as a special case of collaborative filter-
ing with implicit preference data [Hofmann and Puzicha 1999]. The data thus
consists of a set of user-item pairs (u, y) which are assumed to be generated
independently. The key idea of our approach is to introduce hidden variables Z
with states z for every user-item pair, so that user u and item y are rendered
conditionally independent. The possible set of states z is assumed to be finite
and of size k. The resulting model is a mixture model that can be written in the
following way

P (u, y ; θ ) =
∑

z

P (u, y , z) =
∑

z

P ( y |z)P (z|u)P (u), (9)

where sums over z run over all possible k states. By applying Bayes’ rule,
one can alternatively use the equivalent parameterizations P (u, y ; θ ′) =∑

z P (z)P (u|z)P ( y |z) and P (u, y ; θ ′′) = ∑
z P (u|z)P (z| y)P ( y). Since the more

typical situation in collaborative filtering is to make personalized, that is, user-
specific recommendations, we will mainly work with the conditional model

P ( y |u; θ ) =
∑

z

P ( y |z)P (z|u). (10)

In this model, the parameter vector θ summarizes the probabilities P (z|u)
which can be described by (k −1)×n independent parameters as well as P ( y |z)
which requires (m−1)×k independent parameters, where again k denotes the
number of possible states of the hidden variable.
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Notice that if k = 1, then the model simply assumes that the selection of an
item y does not depend on the identity of the user, P ( y |u) = P ( y), resulting
in non-personalized predictions. The user identity and the item identity are
assumed to be marginally independent in this case. As the number of hidden
states increases, the set of representable joint distribution over user–item pairs
becomes less and less constrained until a fully saturated model is obtained,
which can represent any probability mass function over user–item pairs. In
practice, k has to be chosen in a way that adjusts model complexity in the
light of the amount and sparseness of available data. Standard model selection
techniques like cross-validation are available to that extend.

While we have not associated any a priori meaning with the states of the
hidden variables, the hope though is to recover interesting structure in the data
about user communities and groups of related items. Intuitively, the state z of a
hidden variable Z associated with an observation (u, y) is supposed to model a
hidden cause, that is, the fact that a person u selects item y “because of” z. Each
z is intended to offer a hypothetical explanation for an implicit rating that is
itself not directly observable. Since the number of possible states k is typically
much smaller than the number of items and users, the model encourages to
group users into user communities and items into groups of related items.

3.2 Expectation Maximization Algorithm

Following the maximum likelihood approach to statistical inference, we propose
to fit the model parameters θ by maximizing the (conditional) log-likelihood, or
equivalently, by minimizing the empirical logarithmic loss

R(θ ) = − 1
N

∑
〈u, y〉

log P ( y |u; θ ) = − 1
N

n∑
i=1

m∑
j=1

aij log P ( yj |ui; θ ) (11)

where aij counts the number of times each pair (ui, yj ) has been observed. Notice
that for user–items pairs that have never been observed one gets aij = 0 and
hence the number of terms in the double sum in Eq. (11) depends on the number
of nonzero entries in the data matrix A which is upper bounded by N and which
can be far less than n × m.

The Expectation Maximization (EM) algorithm [Dempster et al. 1977] is a
standard method for statistical inference that can be used to (approximately)
maximize the log-likelihood in mixture models like pLSA [Hofmann 2001a].
The first step in deriving an EM algorithm is to specify a complete data model.
A complete data model treats the hidden variables as if they were actually ob-
served, which in our case amounts to the assumption that for every observed
pair (u, y), we would in fact observe a triplet (u, y , z). The complete data model
corresponding to Eq. (10) is given by P ( y , z|u) = P ( y |z)P (z|u) and the corre-
sponding (negative) log-likelihood function can be written as

Rc(θ ) = − 1
N

∑
〈u, y ,z〉

[
log P ( y |z) + log P (z|u)

]
. (12)

Since the states of the latent variables are not known, we introduce a so-called
variational probability distribution Q(z; u, y) [Neal and Hinton 1998] for every

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.



96 • Thomas Hofmann

observed user item pair. Intuitively, the Q distribution will model our best
knowledge about the states of the latent variables given the current parameters.
If we identify the latter with user communities, then Q(z; u, y) will denote the
probability that the co-occurrence of (u, y), that is, the selection of item y by
user u, will be attributed to the fact that u is a member of community z.

Using Q one can define a family of risk functions (one risk function for every
choice of Q)

R̄(θ , Q) = − 1
N

∑
〈u, y〉

∑
z

Q(z; u, y)
[
log P ( y |z) + log P (z|u)

]
. (13)

Exploiting the concavity of the logarithm and using Jensen’s inequality
(cf. Cover and Thomas [1991]), it can be shown that every R̄(·, Q) defines an
upper bound on R(·) (up to a constant that only depends on Q),

R(θ ) = − 1
N

∑
〈u, y〉

log
∑

z

Q(z; u, y)
P ( y |z)P (z|u)

Q(z; u, y)
(14a)

≤ − 1
N

∑
〈u, y〉

∑
z

Q(z; u, y) log
P ( y |z)P (z|u)

Q(z; u, y)
(14b)

= R̄(θ , Q) − 1
N

∑
〈u, y〉

H(Q(·; u, y)) , (14c)

where H(Q) refers to the entropy of a probability distribution Q .
The EM algorithm now consists of two steps that are performed in alterna-

tion: (i) computing the tightest bound for given parameters θ̂ and (ii) optimizing
this bound with respect to θ . The first step consists of minimizing Eq. (14c) with
respect to the variational distribution Q . This is called the E-step and amounts
to computing the posterior probabilities of the hidden variables. Thus, for given
parameters θ̂ , the optimal Q—denoted by Q∗—is given by

Q∗(z; u, y ; θ̂ ) = P (z|u, y ; θ̂ ) = P̂ ( y |z)P̂ (z|u)∑
z ′ P̂ ( y |z ′)P̂ (z ′|u)

. (15)

A formal derivation using the technique of Lagrange multipliers is included in
the appendix. The hat on probabilities in Eq. (15) denotes quantities param-
eterized by θ̂ . Obviously, the posterior probabilities need only to be computed
for user–item pairs (u, y) that have actually been observed. Averaging Rc with
respect to the posterior distribution calculated from Eq. (15) then yields the
following upper bound on the negative log-likelihood function

R̄(θ , θ̂ ) ≡ R̄(θ , Q∗) = − 1
N

∑
〈u, y〉

∑
z

Q∗(z; u, y , θ̂ )
[
log P ( y |z) + log P (z|u)

]
(16a)

= − 1
N

∑
〈u, y〉

∑
z

P̂ ( y |z)P̂ (z|u)∑
z ′ P̂ ( y |z ′)P̂ (z ′|u)

[
log P ( y |z) + log P (z|u)

]
, (16b)

which needs to be optimized with respect to the parameters θ in the Maximiza-
tion (M) step of EM. The M-step requires to solve a constrained optimization
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problem (cf. appendix for details) leading to the set of equations

P ( y |z) =
∑

〈u, y ′〉: y ′= y Q∗(z; u, y , θ̂ )∑
〈u, y〉 Q∗(z; u, y , θ̂ )

(17a)

P (z|u) =
∑

〈u′, y〉:u′=u Q∗(z; u, y , θ̂ )∑
z ′
∑

〈u′, y〉:u′=u Q∗(z ′; u, y , θ̂ )
=
∑

〈u′, y〉:u′=u Q∗(z; u, y , θ̂ )

|{〈u′, y〉 : u′ = u}| . (17b)

The complete EM algorithm now proceeds by alternating the E-step in Eq. (15)
with the M-step in Eq. (17).

3.3 Regularized Risk Functions

Learning statistical models with many parameters from a limited amount of
data bears the risk of overfitting. Traditional model selection techniques would
fit models by maximum likelihood and then determine the generalization per-
formance of the model either analytically (typically in an asymptotic approx-
imation) or via empirical evaluation using hold-out data or cross-validation.
As an alternative approach we have proposed a technique called tempered EM
[Hofmann 2001a] which minimizes a regularized risk function instead of the
empirical risk (i.e. the negative log-likelihood in the case of maximum likelihood
estimation). Formally, a β-parameterized family of regularized risk functions
can be obtained by generalizing the upper bound in Eq. (14c)

R̃β(θ , Q) ≡ R̄(θ , Q) − 1
β

∑
〈u, y〉

H(Q(·; u, y)) (18)

Notice that for β = 1 this reduces to maximum likelihood estimation via EM.
For β < 1 more weight is put on the entropy of Q which avoids “over-confidence”
in computing the posterior probabilities as can be seen from the solution of the
generalized E-step (cf. appendix)

Q∗(z; u, y , θ̂ ) ∝ (P̂ (z|u)P̂ ( y |z)
)β

. (19)

As a result, the optimal Q-distributions will be more smeared-out or fuzzy
which counteracts overfitting as we will demonstrate in the experiments. Simi-
lar “tricks” have been used in speech recognition and other applications in-
volving high-dimensional statistical models, in particular to compensate for
simplifying assumptions about statistical independence. Notice that one of the
advantages of tempered EM is the fact that the M-step is unaffected by the
choice of β, hence one only has to modify the E-step.

A more rigorous framework is offered by the framework of Bayesian learning.
As has been proposed in Blei et al. [2002] one can put Dirichlet priors on the
multinomial distributions P (z|u) and integrate them out, resulting in a model
that has been called latent Dirichlet allocation (LDA) model. However, inference
is significantly harder in this setting and further approximation are necessary
to derive a tractable algorithm [Blei et al. 2002; Minka and Lafferty 2002].
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3.4 Mixture Models, Clustering, and Dimension Reduction

It is important not to confuse the pLSA model with probabilistic or Bayesian
clustering models [Breese et al. 1998; Chien and George 1999] in which it is
assumed that each user belongs to exactly one user group. In a standard user
clustering model, one introduces a single latent cluster membership variable
for every user u, while the pLSA model associates a latent variable with ev-
ery observation triplet (u, v, y). Hence, different ratings of the same user can
be explained by different latent causes in pLSA, whereas a user clustering
model assumes that all ratings involving the same user are linked to the same
underlying community. This can be stated more formally by computing and
comparing the probability of a set of observations involving a particular user.
The clustering model yields the following probability for the ratings of a fixed
user u

P ((v1, y1), . . . , (vl , yl )) =
∑

z

P (z)
∏

i

P (vi, yi|z) . (20)

In contrast, in the pLSA model each user is characterized by a distribution
P (z|u) and one gets a user-specific expression

Pu((v1, y1), . . . , (vl , yl )) =
∏

i

∑
z

P (z|u)P (vi, yi|z) . (21)

By integrating out the mixture proportions P (z|u) in a Bayesian manner, one
can also define a generative model that does not have any reference to a specific
user,

P ((v1, y1), . . . , (vl , yl )) =
∫

�

[∏
i

∑
z

θz P (vi, yi|z)

]
p(θ ) dθ. (22)

Here, θz with θz ≥ 0 and
∑

z θz = 1 takes the role of a latent parameter, which
is averaged over using a prior probability density function p(θ ). If the latter
is chosen to be a Dirichlet distribution, one gets the LDA model of Blei et al.
[2002]. In this article, we have focused on maximum likelihood estimation of
P (z|u), because statistical inference turns out to be significantly easier than in
the fully Bayesian model.

4. LATENT SEMANTIC MODELS WITH RATINGS

4.1 Model Definition and Dependency Structures

Since many applications of collaborative filtering involve explicit user ratings,
the pLSA model needs to be extended appropriately. We will focus first on the
case, where ratings are predicted for fixed items (forced prediction). There are
two different ways to augment the pLSA model with an additional random
variable v for explicit ratings, as shown in Figures 1(e) and 1(f). The predicted
rating will depend on the latent variable z and it will either depend directly on
the item (variant (e)) or the user (variant (f)). The augmented pLSA model is
hence no longer symmetric in the sense that both types of entities, users and
items, are treated differently. We call the first variant the community version,
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Fig. 1. Graphical model representation of possible extensions of the pLSA model to include a rating
variable v. (a) Depicts the co-occurrence pLSA model. In (b), the rating only depends on the latent
variable. (c) and (d) correspond to the free prediction mode with users and items interchanging
their roles. (e) and (f) are derived from (c) and (d), respectively, by removing one arc, which is the
manipulation corresponding to forced prediction.

since the user only influences the prediction mediated by z, but not directly.
Correspondingly, the second variant will be called the categorized version, since
items only impact the prediction through z which is supposed to model item
categories or types. Similarly, two models can be derived for the free prediction
mode. They are depicted in Figures 1(c) and 1(d). The model in Figure 1(b) is
too restrictive to be useful for collaborative filtering.

4.2 Class Conditional Distributions

The proposed model has two ingredients, mixture coefficients—which in the
community variant correspond to probabilities P (z|u)—and class-conditional
probability distributions P (v| y , z). While the variables u and y are naturally
assumed to be categorical, one of the key questions is how to take possible
scales of the response variable v into account and how to parameterize the
class-conditional distributions. In what follows, we will for concreteness focus
on the community model, but the same argumentation applies to the categorized
model variant.

If v is itself a categorical variable, for example, only taking binary values,
v ∈ {−1, 1}, then one can simply introduce success probability parameters
π y ,z ∈ [0; 1] and define P (v| y , z) ≡ π y ,z . More generally, one can parameter-
ize the conditional probability for categorical variables in the following manner
(cf. Hofmann [2001b])

P (v| y , z) = πv
y ,z , where

∑
v∈V

πv
y ,z = 1 . (23)

In working with numerical (absolute) scales, we propose to introduce a loca-
tion parameter µ y ,z ∈ � and a scale parameter σ y ,z ∈ �+ for every community
z and every item y which defines a Gaussian mixture model with user-specific
mixing weights

P (v|u, y) =
∑

z

P (z|u) P (v; µ y ,z , σ y ,z ), (24a)

P (v; µ, σ ) = 1√
2πσ

exp
[
− (v − µ)2

2σ 2

]
. (24b)

The assumption is that within each community the rating for each item pos-
sesses a typical value µ y ,z , but that the observed ratings for individual users
are noisy versions corrupted by normally distributed noise with variance σ 2

y ,z .
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Finally, notice that the expected response can be computed as

E[v|u, y] =
∫
V

v P (v|u, y) dv =
∑

z

P (z|u)
∫
V

v P (v| y , z) dv

=
∑

z

P (z|u)µ y ,z . (25)

It may be helpful to point out that Eq. (24) reduces to a standard Gaussian
mixture model, in the degenerate case of a single user. In general, mixture pro-
portions are user-specific though and the Gaussian pLSA model is very different
from a standard Gaussian mixture model.

4.3 User Normalization

The models presented so far assume that all users express their ratings on a
common scale. However, it is known that different users may associate sub-
jectively different meanings with ratings and, for instance, a five-star rating
may mean different things for different people. In memory-based methods, this
is taken into account by similarity measures such as the Pearson or Spear-
man correlation coefficient [Herlocker et al. 1999]. One way to accommodate
this in model-based approaches with numerical ratings is to normalize the raw
user ratings appropriately. To that extend, we propose to transform ratings
by (i) subtracting the user-specific mean rating µu and by (ii) normalizing the
variance of ratings for each user to one. The first step accounts for individual
differences in the overall “enthusiasm” of users and calibrates what should be
considered as the neutral vote for every user. The second step makes the ratings
more comparable across users by adjusting their dynamic range.

Formally, this is accomplished by performing the user-specific transforma-
tion of ratings

(u, v, y) �→ (u, v′, y), with v′ = v − µu

σu
(26)

and where

µu = E[v|u], σ 2
u = E

[
(v − µu)2|u

]
. (27)

For users with a small number of ratings, one has to be careful to perform
appropriate smoothing in estimating the standard deviations (and to a lesser
extend the means), since the empirical estimates derived from sample averages
may be very unreliable due to sampling noise. We have thus used the following
scheme to smooth the estimates of the variances,

σ 2
u =

∑
〈u,v, y〉(v − µu)2 + qσ̄ 2

nu + q
, (28)

where σ̄ 2 denotes the overall variance of ratings, nu is the number of ratings
available for user u and q is a free parameter controlling the smoothing strength
(set to q = 5 in our experiments).
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4.4 Maximum Likelihood Estimation: Discrete Case

Let us first discuss model fitting in the simplest case of the community or cate-
gorized models with a categorical response variable. Performing (approximate)
maximum likelihood estimation can again be performed via the EM algorithm
along exactly the same lines as outlined in Section 3. The only difference is
that P ( y |z) is replaced by P (v| y , z)P ( y |z) (free prediction) or P (v| y , z) (forced
prediction), respectively. One thus arrives at the following E-step for the forced
prediction case

Q∗(z; u, v, y , θ̂ ) = P̂ (z|u)P̂ (v| y , z)∑
z ′ P̂ (z ′|u)P̂ (v| y , z ′)

(29)

and similarly for the free prediction case

Q∗(z; u, v, y , θ̂ ) = P̂ (z|u)P̂ (v| y , z)P̂ ( y |z)∑
z ′ P̂ (z ′|u)P̂ (v| y , z ′)P̂ (z|z ′)

. (30)

The resulting M-step equations are Eq. (17) and

P (v| y , z) ∝
∑

〈u,v′ , y ′ 〉:
v′=v, y ′= y

Q∗(z; u, v, y , θ̂ ) . (31)

The details of the derivation can be found in the appendix. Comparing these
equations with the standard pLSA equations in Section 3 shows little differ-
ences on a qualitative level.

4.5 Maximum Likelihood Estimation: Continuous Case

In the continuous case with Gaussian distributions, both the E-step and M-step
need to be modified. The E-step equation can be obtained by replacing P (v| y , z)
with a Gaussian probability density function P (v; µ y ,z , σ y ,z ). The M-step up-
date equations can be obtained by differentiating Eq. (16) with respect to the
parameters µ y ,z and σ 2

µ,z (cf. appendix) which results in

µ y ,z =
∑

〈u,v, y ′〉: y ′= y v Q∗(z; u, v, y , θ̂ )∑
〈u,v, y ′〉: y ′= y Q∗(z; u, v, y , θ̂ )

(32a)

σ 2
y ,z =

∑
〈u,v, y ′〉: y ′= y (v − µ y ,z )2 Q∗(z; u, v, y , θ̂ )∑

〈u,v, y ′〉: y ′= y Q∗(z; u, v, y , θ̂ )
. (32b)

These are essentially the standard M-step equations of a Gaussian mixture
model. The fact that mixing proportions are user-specific only enters in the
computation of the posterior probabilities in the E-step. On an intuitive level,
the community means µ y ,z and variances σ 2

y ,z are obtained by averaging over
votes available for item y . The relative weight of the vote cast by user u though
depends on the posterior probability of the latent “community” variable z.

4.6 Computational Complexity

The amount of data available in many practical applications of recom-
mender systems can be enormous and the scalability of collaborative filtering
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algorithms is a crucial factor for a successful system deployment. One has to
distinguish between the offline and online computational complexity of an al-
gorithm. The former accounts for computations that can be performed before-
hand, that is, before actual predictions or recommendations for specific users
have to be made. The latter deals with those computations that can only be per-
formed in real-time during the interaction with a specific user, either because
it is intractable to precompute all possible predictions or recommendations in
advance, or because user profiles are changing dynamically in the course of an
on-line session.

4.6.1 Offline Complexity. Analyzing the offline complexity of the proposed
EM algorithm requires first of all to calculate the complexity of the E-step and
M-step respectively. In the E-step, one needs to compute the optimal variational
probability Q∗ for each of the N observed user ratings. Each such Q∗ consists
of k numbers and requires a constant number of arithmetic operations to be
computed, resulting in O(k · N ) operations for a single E-step. In the M-step,
the posterior probabilities for each rating are accumulated to form the new es-
timates for P (z|u), P (v| y , z) and (in the free prediction model) P ( y |z). Notice
that each Q∗(z; u, v, y) is added to the accumulators for exactly one P (z|u) and
P ( y |z) as well as one of the accumulators for P (v| y , z) (multinomial model) or
µ y ,z and σ 2

y ,z (Gaussian model). Thus, the M-step also requires O(k · N ) opera-
tions. Typical values of k in our experiments have been in the range between 20
and 200. As far as memory requirements are concerned, we would like to point
out that the E-steps and M-steps can be interleaved so that at any point we
need to store the old value of the parameters, summarized in θ̂ , as well as the
same number of accumulator variables which are used internally to compute
the new estimate of θ .

The number of EM-iterations that need to be performed cannot be easily
estimated a priori, since it depends on properties of the specific data set. In
the experiments, we have found that between 30–100 iterations are usually
sufficient.

4.6.2 Online Complexity. More important for many applications is the
online complexity of computing predictions in a dynamic environment. First of
all, let us analyze the computational effort for computing a prediction g (u, y),
focusing on the Gaussian pLSA case for concreteness. From Eq. (25), we have
that g (u, y) = ∑

z P (z|u)µ y ,z . Since µ y ,z and P (z|u) are assumed to be ex-
plicitly available as part of the statistical model, this requires 2k arithmetic
operations. Moreover, since the number of communities k does not depend on
the number of users n nor the number of items m, this amounts to a constant
time prediction algorithm which has a computational complexity of O(k).

For new users u, we also have to compute P (z|u) in the first place. Similarly,
if additional ratings for user u become available, we would like to update the pa-
rameters P (z|u) accordingly. We propose to ignore the effect on the community-
specific parameters, since we expect the notion of a community to change on a
much smaller time-scale. These changes can be taken into account by regular
offline incremental EM updates or model retraining. From Eq. (17b), one sees
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that computing P (z|u) only involves posterior probabilities P (v|u, y) for rat-
ings of the same user u. Hence we propose to perform a limited EM iteration in
which the E-step computes the posterior probabilities for all nu ratings of the
active user, which can be done in O(nu · k) operations and the M-step updates
are restricted to the P (z|u) parameters, which can also be carried out in time
O(nu · k). This operation has also been called fold-in [Hofmann 2001a]. Typi-
cally, 20–40 restricted EM iterations are sufficient to compute P (z|u). Notice
that the computational complexity is independent of the number of users and
items, but depends on the number of items that have been rated by the active
user.

5. EXPERIMENTS

5.1 Data Set

The data we have used in our experiments is the EachMovie data set
[EachMovie ]. The data has been collected by Digital Equipment Research Cen-
ter from 1995 through 1997. There are 1,623 items (movies) in this data set
and 61,265 user profiles with a total of over 2.1 million ratings. Consequently,
the average number of ratings per user is about 35. The rating scale is discrete,
taking values from 0 (no star) to 5 (five stars),2 with 5 being the highest rating
and 0 being the lowest rating. The average rating over all observed votes is
≈ 3.03 and the overall rating variance is ≈ 1.48.

The EachMovie data set is to our knowledge the largest publicly available
data set for collaborative filtering and possesses the advantage of offering ex-
plicit user ratings. The latter fact allows us to study both, item selection and
rating prediction.

5.2 Evaluation Metric

A thorough empirical analysis of collaborative filtering algorithms has been
presented in Breese et al. [1998] and we have adapted most of the proposed
evaluation metrics. The effectiveness of collaborative filtering techniques can
be measured in various ways dependent on how the recommender system is
used and how results are presented to the user.

The first setting we have investigated assumes that the goal of the system
is to predict user ratings. Hence, we assume that an item y is presented to
a user u and the goal is to predict the rating v̂ = g (u, y). We have used two
loss functions to measure the deviation between the predicted rating v̂ and the
observed rating v: the absolute deviation |v̂ − v| and the squared error (v̂ − v)2.
Empirical risks based on these loss functions are summarized as the mean
absolute error (MAE) and the rooted mean square (RMS) error. In addition we
have also measured the zero-one loss, in which case the predictions have been
quantized by rounding v̂ to the closest integer.

In the second setting, the goal is to predict both, the selected item and the
corresponding rating. Here we have used the score for ranked lists proposed

2The original ratings have been multiplied by a factor of 5.
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in Breese et al. [1998]. Let us denote a permutation of the items by τ and
the rank of an item y with respect to τ by τ ( y). The top ranked item y will
have τ ( y) = 1, the second item τ ( y) = 2, and so forth. Items whose ratings
have been used for training are not included in the ranking. We then use the
following rank score for τ ,

R(u, τ ) =
∑

〈u′,v, y〉:u=u′
2− τ ( y)−1

α−1 max(v − v̄, 0), (33)

with v̄ denoting the overall mean vote. The rationale behind this score is that
when presented with a ranked list of items, users will sift through the list start-
ing at the top, until they find a relevant item or simply give up. The probability
that a user will ever take notice of an item at rank r is modeled as an exponen-
tial distribution with a half-life constant α (set to 4 in our experiments). The
total score for a population of users is then measured by (cf. Breese et al. [1998])

R = 100
∑

u R(u, τu)∑
u maxτ ′ R(u, τ ′)

. (34)

This normalizes the sum of the achieved score with what could have optimally
achieved, if for every user all relevant items would appear at the very top of
the ranked list.

5.3 Evaluation Protocols

We have used the leave-one-out protocol to evaluate the obtained prediction
accuracies. This means we randomly leave out exactly one rating for every
user possessing at least a minimal number M ≥ 2 of observed ratings and
then average the loss function over this set of users to obtain an estimate of
the risk. This protocol has been called AllBut1 in Breese et al. [1998]. More
precisely, we have eliminated one vote for every user from the training set and
trained models on this reduced set. Notice that this uses somewhat less data
than required, but allows us to use a single model to evaluate the leave-one-
out performance averaged over all users. We have varied M to investigate the
prediction accuracy for users for which a minimal number of M ratings are
available. In order to establish statistical significance of the findings, we have
repeated the leave-one-out procedure 20 times with different random seeds.
The reported numbers are the mean performance averaged over these 20 runs.

5.4 Results: Prediction Scenario

Table I summarizes experimental results obtained by different variants of the
proposed method (multinomial, Gaussian, Gaussian with normalized votes),
a memory-based method using the Pearson correlation coefficient, and results
published in Breese et al. [1998] for various methods (Bayesian clustering = BC,
Bayesian networks = BN, correlation = CR). The baseline is simply defined by
the overall mean vote for each item. The test votes have been selected by leave-
one-out with M = 2.
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Table I. Prediction Accuracy of Various Methods in forced Prediction Mode Averaged
Over 20 Runs

Error Relative improvement

Method MAE RMS 0/1 loss MAE RMS 0/1 loss
Baseline 1.089 1.371 71.2 ±0 ±0 ±0
Pearson correlation 0.948 1.237 64.7 12.9% 9.7% 9.1%
Multinomial 0.925 1.209 59.2 15.1% 11.8% 16.8%
Gaussian 0.974 1.251 67.2 10.5% 8.8 % 5.6%
Gaussian, normalized 0.895 1.165 63.4 17.8% 15.0% 10.9%
CR [Breese et al. 1998] 0.994 — — — — —
BC [Breese et al. 1998] 1.103 — — — — —
BN [Breese et al. 1998] 1.066 — — — — —

As far as different sampling models for the ratings are concerned, one can
make the following observations: First of all, the multinomial sampling model is
quite competitive, yielding an improvement over the correlation-based method
for all three loss functions and achieving the best overall performance for the
zero-one loss. Second, the Gaussian model without user-specific normalization
does much worse and is clearly not competitive. Third, performing the user-
specific scale transformation in the Gaussian rating model leads to a substantial
gain in prediction accuracy, yielding the best achieved results with respect to
MAE and RMS error. It is also quite remarkable that this result is obtained with
a model involving a much smaller number of communities (k = 40) compared
to the multinomial model (k = 200). We conclude from this that the assumption
of user-specific rating scales encodes useful prior knowledge.

As can be seen, the proposed Gaussian pLSA outperforms the memory-based
method in terms of MAE and achieves a relative accuracy gain over the base-
line of 17.8% as opposed to 12.9% for the Pearson correlation. This corresponds
to a relative performance gain of approximately 6% when taking the Pearson
correlation method as the baseline. In absolute terms, the MAE difference be-
tween the memory-based method based on the Pearson correlation coefficient
and the normalized Gaussian pLSA model with k = 40 has a mean of 0.053
and a standard deviation of 0.0036. This is statistically highly significant, for
example, using a paired t-test on the differences this corresponds to a t-value
of ≈50, which means that Gaussian pLSA outperforms the Pearson correlation
method with confidence approaching certainty.

Notice that the results are overall better than the results published in Breese
et al. [1998]. With respect to the latter results one has to acknowledge a some-
what different setup though, which has lead to overall better performance re-
sults in our experiments. However, an approximate comparison seems to be pos-
sible by identifying our implementation of a correlation-based filtering method
with the one implemented in Breese et al. [1998].

We have further investigated the effect of M on the prediction accuracy
obtained by the correlation-based method and the Gaussian pLSA approach. It
has to be expected that the prediction accuracy improves with growing M for all
methods, since predictions should be more reliable for users for which a larger
number of ratings is available. Figure 2 shows the result in terms of MAE for
M = 2, 5, 10, 20, 50, 100, 200. It shows that the relative advantage of pLSA over
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Fig. 2. MAE for the Pearson correlation method and Gaussian pLSA for different values of M
(corresponding to the minimal number of ratings required for test users).

Fig. 3. Predictive performance in terms of MAE and RMS for the multinomial pLSA model as a
function of the number of user communities k.

the correlation-based method increases for larger M . Gaussian pLSA seems to
be capable of using additional ratings more effectively in order to improve the
average prediction accuracy, whereas the correlation-based methods shows only
a small improvement for larger M compared to the M = 2 case. At M = 200
the relative improvement of Gaussian pLSA over the correlation-based method
is more than 10% and the relative improvement over the baseline popularity
prediction approach is 23%.

We have also investigated the prediction accuracy obtained by models with
varying number of user communities. Figure 3 shows the results obtained for
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Fig. 4. Predictive performance in terms of MAE and RMS for the Gaussian pLSA model as a
function of the number of user communities k.

the multinomial model. It can be seen that the performance improves steadily
with the number of communities, but levels off towards the end. This is not
true however in the case of models with Gaussian distributions for community
ratings. Figure 4 shows a clear optimum around k = 40 communities, after
which the performance slowly degrades with model size. This seems to indi-
cate that the multinomial rating model needs to introduce a larger number
of communities to account for the user-specific shift in the rating scale, which
is incorporated a priori in the Gaussian model. The latter therefore requires
fewer communities to model the correlations between the normalized user
ratings.

Our next comparison (Figure 5) evaluates the effectiveness and importance
of the tempered regularization with early stopping. We have used 10% hold-out
data to determine the optimal stopping point and β-value, respectively. In the
case of early stopping, one more EM training iterations using all data (training
plus hold-out) is performed after stopping. Since the results are comparable
for different sampling models, we only report and discuss the results for the
multinomial case using the MAE criterion. As can be seen from the graph, the
models obtained via tempered EM consistently outperform the ones trained by
plain EM with early stopping. It is important to notice though that the number
of EM iterations performed in early stopping EM is much smaller, typically
between 30 and 40, compared to approximately 100–120 in the tempered ver-
sion. On the other hand, for the same performance level, the tempered models
need fewer parameters and are hence more compact. Tempering also requires
to determine the optimal inverse temperature β which further increases the
computational burden. In practice, the scalability-accuracy tradeoff may be de-
cided with regard to the specific application and the available computational
resources.
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Fig. 5. Predictive performance in terms of MAE for tempered EM (TEM) vs. early stopping EM
(EM).

Table II. Performance of Different Methods in Free Prediction Mode
According to Ranking Criterion

Method rank gain rel. improv. abs rms
Baseline 16.76 ±0 1.091 1.371
Pearson correlation 21.14 26.1 0.951 1.231
Multinomial 24.41 45.6 0.981 1.245
Gaussian 21.80 30.0 1.020 1.290
Gaussian, normalized 24.28 44.8 0.955 1.211

5.5 Results: Ranking Scenario

The second scenario we have experimentally investigated is the free prediction
mode. Since the prediction accuracy in predicting votes is no longer adequate,
we have used the ranking loss in Eq. (34) to benchmark different algorithms.
Again, we have used the leave-one-out protocol. The results are summarized in
Table II.

The best ranking scores are obtained by the multinomial and the normalized
Gaussian pLSA model. The difference between these two models is not statisti-
cally significant, while the performance gain relative to the Pearson correlation
method is significant. The relative performance gain with respect to the popu-
larity baseline is overall higher than in the forced prediction mode–more than
40% relative improvement are achieved. Notice however that the actual predic-
tion error of these models is higher than for the models that have been trained
in forced mode. In fact the absolute error of the Gaussian pLSA model is slightly
higher than with the correlation-based approach, although the difference is not
statistically significant.
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5.6 Runtime

We have implemented the Gaussian and multinomial pLSA algorithms in C++
and ran our experiments on a standard PC with a 2GHZ CPU. The computer
time needed to perform a single EM step using all 61,265 users for a Gaussian
model with k = 40 is about 30 seconds. The number of iterations required
when using early stopping is around 30–40 while up to 100–120 iterations are
required when using tempered EM. In the latter case, the off-line training of the
model takes thus slightly less than 1 hour, while off-line training using early-
stopping takes less than 20 minutes. For models with larger k, the training
time grows proportionally in k.

5.7 Miscellaneous

In the above experiments, we have always used the community variant of the
latent class models, that is, models involving P (v| y , z) instead of P (v|u, z). We
have also run experiments with the latter though, which has consistently led
to worse results. For example, the best MAE obtained in forced prediction was
0.971 compared to an absolute error of 0.927 for the multinomial community
model.

We have also not been able to obtain competitive results using the normalized
risk function of Eq. (8) for training. In fact, we have even experimented with
various interpolated versions of the risk functions in Eq. (7) and Eq. (8) without
much success. It thus seems that a uniform weighting of each rating is the best
choice.

5.8 Mining User Communities

Finally, we would like to illustrate that the decomposition of user ratings may
lead to the discovery of interesting patterns and regularities that describe user
interests as well as disinterest. To that extent, we have to find a mapping
of a quantitative pLSA model into a more qualitative description suitable for
visualization. We propose to summarize and visualize each user community,
corresponding to one of the k possible states of the latent variable Z , in the
following way. We sort items within each community or interest group accord-
ing to their popularity within the community as measured by the probability
P ( y |z). The most popular items are used to characterize a community and we
expect these items to be descriptive for the types of items that are relevant
to the user community. Figures 6 and 7 display the interest groups extracted
by a multinomial pLSA model with k = 40, ordered according to the average
“positiveness” of each group, computed as g ( y , z) =∑ y ,v vP (v| y , z)P ( y |z). For
example, in Figure 6, interest group 6 has romantic movies like “The Remains
of the Day”, “The Piano”, “Like Water for Chocolate” and “Much Ado About
Nothing” top ranked. Interest group 18 seems to be formed around musicals
like “Mary Poppins”, “Cinderella”, “The Sound of Music” and “Dumbo”. With
each top-ranked item, we also suggest to display the average rating the item
receives in the community, computed as v̄ = ∑

v vP (v| y , z). These numbers

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.



110 • Thomas Hofmann

Fig. 6. User communities 1–20 (of 40) extracted from the EachMovie data set with a multinomial
pLSA model.

are displayed in rectangular brackets and enclosed by stars in Figures 6 and 7.
Looking at the average ratings obtained by the top movies in each of the interest
groups extracted from the EachMovie data set, it is interesting to see that com-
munities seem to constitute themselves around items of either common interest
or disinterest. This is indicated by the fact that movies with highest selection
probabilities P ( y |z) within a community z seem to have similar ratings. Notice
that the latter fact is nowhere enforced by any means in the model and is a
property that emerges from the data.

While some of the dis-interest groups like the one formed around the movies
“Mighty Morphin Power Rangers” and “The Brady Bunch Movie” are certainly
not useful to derive recommendations, they are however important to model and
predict negative ratings and to prevent that certain items end up as recommen-
dations where they should not. Some of the extracted “communities” may thus
not correspond to interest groups in the usual sense, which are formed around
a common interest. Rather, communities are characterized by a commonality
that can also be a shared depreciation for certain items.
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Fig. 7. User communities 21–40 (of 40) extracted from the EachMovie data set with a multinomial
pLSA model.

Overall, we believe that patterns and regularities extracted with pLSA mod-
els can be helpful in understanding shared interests of users and correlations
among ratings for different items. The ability to automatically discover commu-
nities as part of the collaborative filtering process is a trait which pLSA shares
with only few other methods such as clustering approaches, but which is absent
in all memory-based techniques.

6. CONCLUSION

We have presented a powerful method for collaborative filtering and mining
of user data based on a statistical latent class model. The method achieves
competitive recommendation and prediction accuracies, is highly scalable, and
extremely flexible. Conceptionally, the decomposition of user preferences using
overlapping user communities is a novel idea that clearly distinguishes this
approach from traditional memory-based approaches as well as previous model-
based methods.
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APPENDIX

A.1 Derivation of the Generalized E-step

We derive the solution of minimizing the following objective function

Fβ(Q) = R̄(θ , Q) − 1
β

∑
〈u,v, y〉

H(Q(·; u, v, y)) (35)

with respect to the variational distribution Q .
Notice first that Fβ can be rewritten as a sum over contributions from all

(u, v, y) pairs,

Fβ(Q) =
∑

〈u,v, y〉
Fβ(u, v, y , Q), (36)

where

Fβ(u, v, y , Q) = −
∑

z

Q(z; u, v, y)
[
log S(u, v, y , z) − log Q(z; u, v, y)

]
. (37)

Here S(u, v, y , z) = P ( y |z)P (z|u) in the co-occurrence model, whereas
S(u, v, y , z) = P (v| y , z)P ( y |z)P (z|u) in the free prediction case and
S(u, v, y , z) = P (v| y , z)P (z|u) for forced prediction.

Hence, one can minimize every Fβ(u, v, y , Q) separately. Introducing a La-
grange multiplier λ to enforce the normalization constraint

∑
z Q(z; u, v, y) = 1,

one forms the Lagrangian function

Lβ(Q , λ) = Fβ(u, v, y , Q) + λ

(∑
z

Q(z; u, v, y) − 1

)
. (38)

Computing the partial derivative of Lβ with respect to Q(z; u, v, y) and setting
to zero results in the necessary conditions

1
β

log Q∗(z; u, v, y) = log S(u, v, y , z) − λ + 1
β

. (39)

Exponentiating both sides of the equality yields

Q∗(z; u, v, y) = S(u, v, y , z)β

exp
[
βλ − 1

] . (40)

Apparently, λ needs to be chosen such that

exp
[
βλ − 1

] =
∑

z ′
S(u, v, y , z)β ⇐⇒ λ = 1

β

[
1 + log

∑
z ′

S(u, v, y , z)β
]
. (41)

Plugging this value for the Lagrange multiplier λ back into the Lagrangian
function results in the general optimality condition for Q which leads to the spe-
cial cases of Eq. (15) and the tempered version in Eq. (19) for the co-occurrence
model and Eq. (29) and Eq. (30) for the model including rating variables.

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.



Latent Semantic Models for Collaborative Filtering • 113

A.2 Derivation of the M-step

The most general case is the free prediction case, where one has to minimize

R̄(θ , θ̂ )=− 1
N

∑
〈u,v, y〉

∑
z

Q∗(z; u, v, y , θ̂ )
[
log P (v| y , z) + log P ( y |z) + log P (z|u)

]
(42)

with respect to the parameters P ( y |z), P (z|u) and the parameters representing
P (v| y , z), respectively. In order to ensure the normalization

∑
y P ( y |z) = 1 for

all z and
∑

z P (z|u) = 1 for all u, we introduce Lagrange multipliers λz and λu
and form the Lagrangian

L(θ ) = R̄(θ , θ̂ ) +
∑

z

λz

(∑
y

P ( y |z) − 1

)
+
∑

u

λu

(∑
z

P (z|u) − 1

)
(43)

Taking derivatives with respect to P ( y |z) and setting to zero results in

1
P ( y |z)

∑
u

Q∗(z; u, v, y , θ̂ ) − λz = 0 ⇐⇒ P ( y |z) = 1
λz

∑
u

Q∗(z; u, v, y , θ̂ )

(44)

Similarly one obtains for P (z|u)
1

P (z|u)

∑
y

Q∗(z; u, v, y , θ̂ ) − λu = 0 ⇐⇒ P (z|u) = 1
λu

∑
y

Q∗(z; u, v, y , θ̂ )

(45)

Plugging these results back into Eq. (43) yields the following expressions for
the Lagrange multipliers

λz =
∑

y

∑
u

Q∗(z; u, v, y , θ̂ ) (46a)

λu =
∑

z

∑
y

Q∗(z; u, v, y , θ̂ ) =
∑

y

1 = |Y| (46b)

which in turn lead to the M-step equations in Eq. (17).
In the multinomial pLSA model, one uses the same approach for P (v| y , z), in-

troducing additional Lagrange multipliers λ y ,z to ensure that
∑

v P (v| y , z) = 1.
Augmenting the Lagrangian function by a term

∑
y ,z λ y ,z

[∑
v P (v| y , z) − 1

]
and solving as before leads to equation Eq. (31). Notice that the M-step equa-
tions for the co-occurrence model and the forced prediction case can be obtained
by dropping the equations for P (v| y , z) and P ( y |z), respectively.

In the Gaussian pLSA model, one has to compute derivatives
∂R̄(θ , θ̂ )
∂µ y ,z

= − 1
N

∑
〈u,v, y ′〉, y= y ′

Q∗(z; u, v, y , θ̂ )
v − µ y ,z

σ 2
y ,z

= 0 ⇐⇒ (47)

µ y ,z =
∑

〈u,v, y ′〉, y= y ′ Q∗(z; u, v, y , θ̂ )v∑
〈u,v, y ′〉, y= y ′ Q∗(z; u, v, y , θ̂ )

(48)

and a similar equation for σ 2
y ,z .
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