
TiVo: Making Show Recommendations Using a Distributed
Collaborative Filtering Architecture

Kamal Ali
TiVo, Yahoo!

701 First Avenue
Sunnyvale, CA 94089

+1 408 349 7931

kamal@yahoo-inc.com

Wijnand van Stam
TiVo

2160 Gold Street
Alviso, CA 95002
+1 408 519 9100

wijnand@tivo.com

ABSTRACT
We describe the TiVo television show collaborative
recommendation system which has been fielded in over one
million TiVo clients for four years. Over this install base, TiVo
currently has approximately 100 million ratings by users over
approximately 30,000 distinct TV shows and movies. TiVo uses
an item-item (show to show) form of collaborative filtering which
obviates the need to keep any persistent memory of each user s
viewing preferences at the TiVo server. Taking advantage of
TiVo s client-server architecture has produced a novel
collaborative filtering system in which the server does a minimum
of work and most work is delegated to the numerous clients.
Nevertheless, the server-side processing is also highly scalable
and parallelizable. Although we have not performed formal
empirical evaluations of its accuracy, internal studies have shown
its recommendations to be useful even for multiple user
households. TiVo s architecture also allows for throttling of the
server so if more server-side resources become available, more
correlations can be computed on the server allowing TiVo to
make recommendations for niche audiences.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms.

Keywords
Collaborative-Filtering, Clustering Clickstreams

1. INTRODUCTION
With the proliferation of hundreds of TV channels, the TV viewer
is faced with a search task to find the few shows she would like to
watch. There may be quality information available on TV but it
may be difficult to find. Traditionally, the viewer resorts to
"channel surfing" which is akin to random or linear search. The

mid 1990's in the USA saw the emergence of the TV-guide
channel which listed showings on other channels: a form of
indexing the content by channel number. This was followed in the
late 1990's by the emergence of TiVo. TiVo consists of a
television-viewing service as well as software and hardware. The
client-side hardware consists of a TiVo set-top box which records
TV shows on a hard-disk in the form of MPEG streams. Live TV
and recorded shows are both routed through the hard-disk,
enabling one to pause and rewind live TV as well as recordings.
TiVo's main benefits are that it allows viewers to watch shows at
times convenient for the viewer, convenient digital access to those
shows and to find shows using numerous indices. Indices include
genre, actor, director, keyword and most importantly for this
paper: the probability that the viewer will like the show as
predicted by a collaborative filtering system.

The goal of a recommender system (an early one from 1992 is the
Tapestry system [10]) is to predict the degree to which a user will
like or dislike a set of items such as movies, TV shows, news
articles or web sites. Most recommender systems can be
categorized into two types: content-based recommenders and
collaborative-based recommenders. Content-based recommenders
use features such as the genre, cast and age of the show as
attributes for a learning system. However, such features are only
weakly predictive of whether viewers will like the show: there are
only a few hundred genres and they lack the specificity required
for accurate prediction.

Collaborative filtering (CF) systems, on the other hand, use a
completely different feature space: one in which the features are
the other viewers. CF systems require the viewer for whom we are
making predictions - henceforth called the "active viewer" - to
have rated some shows. This 'profile' is used to find like-minded
viewers who have rated those shows in a similar way. Then, for a
show that is unrated by the active viewer, the system will find
how that show is rated by those similar viewers and combine their
ratings to produce a predicted rating for this unrated show. The
idea is that since those like-minded viewers liked this show, that
the active viewer may also like it. Since other viewers likes and
dislikes can be very fine-grained, using them as features rather
than content-based features leads to recommendations not just for
the most popular shows but also for niche shows and audiences.
We use a Bayesian content-based filtering system to overcome the
cold-start problem (making predictions for new shows) for

shows for which we do not have thumbs data from other users.

The rest of the paper is organized as follows. In Section 2, we
describe previous work on collaborative filtering systems,
specially those making TV or movie recommendations. We
outline the issues and the spectrum of approaches used to address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'04, August 22-25, 2004, Seattle Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 $5.00.

394

Industry/Government Track Paper

those issues. Section 3 gives more detail on the flow of data
starting with a viewer rating a show and culminating in the TiVo
client making a recommendation to the viewer for a new show.
Section 4 explains the performance algorithm: how the server
computes correlations between pairs of shows and how each
client uses those correlations to make show suggestions for its
viewer. Section 5 details the server-side learning needed to
support computation of the correlations. Section 6 outlines future
challenges and directions and we conclude by summarizing the
state of this massively fielded system.

2. PREVIOUS WORK
Recommender systems have been around since the Tapestry [10]
system from 1992 which relied on a small community of users to
make recommendations for each other. However, the first system
we know of for making movie recommendations was the Bellcore
Video Recommender system from 1995 [11]. Recommender
systems can be categorized into content-based filtering systems
and collaborative-filtering systems. In turn, collaborative filtering
systems can be categorized along the following major dimensions:

1. "User-user" or "item-item" systems: In user-user systems,
correlations (or similarities or distances) are computed between
users. In item-item systems (e.g. TiVo and [15]), metrics are
computed between items.

2. Form of the learned model: Most collaborative filtering
systems to date have used k-nearest neighbor models (also
referred to as Memory-based systems or Instance-based systems)
in user-user space. However there has been work using other
model forms such as Bayesian networks [3], decision trees [3],
cluster models [3], "Horting" (similarity over graphs) [1] and
factor analysis [4].

3. Similarity or distance function: Memory-based systems and
some others need to define a distance metric between pairs of
items (or users). The most popular and one of the most effective
measures used to date has been the simple and obvious Pearson
product moment correlation coefficient (e.g. [9]) as shown in
Equation 1 below. As applied for item-item systems, the equation
computes the correlation r between two items (e.g. shows) : s1
and s2. The summation is over all N users u that rated both items
(shows). ts1u is the rating given by user u to show s1. Ts1 is the
average rating (over those N users) given to s1. s1 is the standard
deviation of ratings for s1. Similar definitions apply for the other
show s2.

Equation 1. Pearson correlation metric

Other distance metrics used have included the cosine measure
(which is a special case of the Pearson metric where means are
zero) and extensions to the Pearson correlation which correct for
the possibility that one user may rate programs more or less
harshly than another user. Following in the track of TFIDF
(Term-Frequency Inverse Document-Frequency) as in [14],
another extension gives higher weight to users that rate
infrequently; this is referred to as the 'inverse frequency'
approach. Another approach is case amplification

in which a

non-linear function is applied to the ratings so that a rating of +3,
for example, may end up being much more than three times as
much as a rating of +1.

4. Combination function: Having defined a similarity metric
between pairs of users (or items), the system needs to make
recommendations for the active user for an unrated item (show).
Memory-based systems typically use the k-nearest neighbor
formula (e.g. [8]). Equation 2 shows how the k-nearest neighbor
formula is used to predict the rating ts for a show s. The predicted
rating is a weighted average of the ratings of correlated neighbors
ts', weighted by the degree rs,s' to which the neighbor s' is
correlated to s. Only neighbors with positive correlations are
considered.

Equation 2. Weighted linear average computation for
predicted thumbs level

In item-item systems, the k-nearest neighbors are other items
which can be thought of as points embedded in a space whose
dimensions or axes correspond to users. In this view, equation 1
can be regarded as computing a distance or norm between two
items in a space of users. Correspondingly, in user-user systems,
the analog of equation 1 would be computing the distance
between two users in a space of items.

Bayesian networks have also been used as combination functions;
they naturally produce a posterior probability distribution over the
rating space and cluster models produce a density estimate
equivalent to the probability that the viewer will like the show. K-
nearest neighbor computations are equivalent to density
estimators with piecewise constant densities.

5. Evaluation criterion: The accuracy of the collaborative
filtering algorithm may be measured either by using mean
absolute error (MAE) or a ranking metric. Mean absolute error is
just an average, over the test set, of the absolute difference
between the true rating of an item and its rating as predicted by
the collaborative filtering system. Whereas MAE evaluates each
prediction separately and then forms an average, the ranking
metric approach directly evaluates the goodness of the entire
ordered list of recommendations. This allows the ranking metric
approach to, for instance, penalize a mistake at rank 1 more
severely than a mistake further down the list. Breese et al. [3] use
an exponential decay model in which the penalty for making an
incorrect prediction decreases exponentially with increasing rank
in the recommendation list. The idea of scoring a ranked set is
similar to the use of the DCG measure (discounted cumulative
gain [12]), used by the information-retrieval community to
evaluate search engine recommendations. Statisticians have also
evaluated ranked sets using the Spearman rank correlation
coefficient [9] and the kappa statistic [9].

Now we summarize the findings of the most relevant previous
work. Breese et al found that on the EachMovie data set [6], the
best methods were Pearson correlation with inverse frequency and
"Vector Similarity" (a cosine measure) with inverse frequency.
These methods were statistically indistinguishable. Since Pearson
correlation is very closely related to the cosine approach, this is
not surprising. Case amplification was also found to yield an

395

Industry/Government Track Paper

added benefit. On this data set, the clustering approach (mixture
of multinomial models using AutoClass [5]) was the runner-up
followed by the Bayesian-network approach. The authors
hypothesize that these latter approaches worked relatively poorly
because they needed more data than was available in the
EachMovie set (4119 users rating 1623 shows with the median
number of ratings per show at 26). Note that for the EachMovie
data set, the true rating was a rating from 0 to 5, whereas the data
sets on which Bayesian network did best only required a
prediction for a binary random variable.

Sarwar et al. [15] explore an item-item approach. They use a k-
nearest neighbor approach, using Pearson correlation and cosine.
Unfortunately for comparability to TiVo, their evaluation uses
MAE rather than a ranking metric. Since TiVo presents a ranked
list of suggestions to the viewer, the natural measure for its
recommendation accuracy is the ranking metric, not MAE.
Sarwar et al. find that for smaller training sizes, item-item has
lower predictive error on the MovieLens data set than user-user
but that both systems asymptote to the same level. Interestingly,
they find the minimum test error is obtained with k=30 in the k-
nearest neighbor computation on their data set. They find again
that cosine and Pearson perform similarly but the lowest error rate
is obtained by their version of cosine which is adjusted for
different user scales. The issue of user-scales is that even though
all users may be rating shows over the same rating scale, one user
may have a much narrower variance than another, or one may
have a different mean than another. User-scale correction will
normalize these users scores before comparing them to other
users.

Another issue facing recommendation systems is the speed with
which they make recommendations. For systems like MovieLens
which need to make recommendations in real-time for users
connected via the Web, speed is of the essence. The TiVo
architecture obviates this by having the clients make the
recommendation instead of the server. Furthermore, each TiVo
client only makes recommendations once a day in batch for all
upcoming shows in the program guide whereas some
collaborative systems may change their recommendations in real-
time based upon receiving new ratings from other users.

Lack of space prevents us from discussing work on privacy
preservation (e.g. [4]), explainability1 and the cold-start issue:
how to make predictions for a new user or item.

3. BACKGROUND ON TIVO
In this section we describe the flow of data that starts from a user
rating a show to upload of ratings to the server, followed by
server-side computation of correlations, to download and finally
to the TiVo client making recommendations for new shows.

Every show in the TiVo universe has a unique identifying series
ID assigned by Tribune Media Services (TMS). Shows come in
two types: movies (and other one-off events) and series which are
recurring programs such as 'Friends'. A series consists of a set of

1 An example of a collaborative-filtering system employing
explainability is the Amazon.com feature: "Why was I
recommended this". This feature explains the recommendation in
terms of previously rated or bought items.

episodes. All episodes of a series have the same series ID. Each
movie also has a "series" ID. Prediction is made at the series level
so TiVo does not currently try to predict whether you will like
one episode more than another.

The flow of data starts with a user rating a show. There are two
types of rating: explicit and implicit. We now describe each of
these in turn.

Explicit feedback: The viewer can use the thumbs-up and
thumbs-down buttons on the TiVo remote control to indicate if
she likes the show. She can rate a show from +3 thumbs for a
show she likes to -3 thumbs for a show she hates (we will use the
notation -n thumbs for n presses of the thumbs-down button).
When a viewer rates a show, she is actually rating the series, not
the episode. Currently (Jan. 2004), the average number of rated
series per TiVo household is 98. Note that TiVo currently does
not build a different recommendation model for each distinct
viewer in the household

in the remainder of the paper we will
assume there is only one viewer per household.

Implicit feedback: Since various previous collaborative filtering
systems have noted that users are very unlikely to volunteer
explicit feedback [13], in order to get sufficient data we decided
that certain user actions would implicitly result in that program
getting a rating. The only forms of explicit feedback are pressing
the thumbs-up and thumbs-down buttons: all other user actions
are candidates for implicit feedback. Currently, the only user
action that results in an implicit rating happens when the user
choose to record a previously unrated show. In this event, that
show is assigned a thumbs rating of +1. Currently the prediction
algorithms do not distinguish the +1 rating originating from
explicit user feedback (thumbs-up button) from this implicit +1
rating. Note that it is not clear if the +1 rating from a requested
recording is stronger or weaker evidence than a +1 rating from a
direct thumbs event. Viewers have been known to rate shows that
they would like to be known as liking but that they don t actually
watch. Some viewers may give thumbs up to high-brow shows
but may actually schedule quite a different class of show for
recording. One user action that could be an indicator even better
than any of these candidates is number of minutes watched.
Other possible user actions that could serve as events for implicit
feedback are selection of a 'season pass', deletion, promotion or
demotion of a season pass. A 'season pass' is a feature by which
the viewer indicates that she wants to record multiple upcoming
episodes of a given series.

The following sequence details the events leading to TiVo making
a show suggestion for the viewer:

1. Viewer feedback: Viewer actions such as pressing the
thumbs buttons and requesting show recordings are noted by
the TiVo client to build a profile of likes and dislikes for
each user.

2. Transmit profile: Periodically, each TiVo uploads its
viewer's entire thumbs profile to the TiVo server. Indeed, the
entire profile rather is sent, rather than an incremental upload
because we designed the server so that it does not
maintain even a persistent anonymized ID for the user. As a
result the server has no way of tying together incremental
thumbs profiles and so it becomes necessary to upload the
entire profile each time. We have found uploading the entire

396

Industry/Government Track Paper

profile does not constitute an onerous burden on the upload
time.

3. Anonymization: The server anonymizes the thumbs
profile log, resetting the file transfer date to Jan. 1 1970 so
transfer time cannot be used to trace which TiVo the file
came from.

4. Server-side computation: The server computes pair-wise
correlations between series for series "of interest". Next, it
prepares a package consisting of correlations pairs for
download to TiVos. See Section 5 for more detail on which
series are deemed "of interest".

5. Correlation download: Correlation pairs are downloaded
to certain TiVos. To reduce download stress for the network,
the download is round-robin'd across all TiVos so that each
TiVo only receives new correlation pairs every N days. Each
TiVo currently receives a download of 320KB
(uncompressed) consisting of twenty-eight thousand
correlation pairs, averaging 11.5 bytes per pair.

6. Client-side computation: The collaborative-filtering
algorithm on each TiVo iterates through its program guide,
using the download package to make predictions for unrated
shows. Note that each TiVo makes recommendations over a
different set of programs, determined by which channels are
received at that TiVo and which series have not been rated at
that TiVo. Whereas most collaborative filtering systems have
to worry about server response time for making
recommendations to all connected users, because the TiVo
clients make all the recommendations, this task does not tax
the server.

7. Suggestions List: The collaborative predictions are
combined with the content-based predictions and already-
rated shows to assemble a list of shows that TiVo thinks the
viewer would like to watch (Figure 1).

8. Inferred-recordings: If there is enough space on the hard
disk and if there are not many shows explicitly requested by
the viewer to be recorded in the short-term, TiVo will use
that spare space and time to record the show highest in the
suggestions list that will fit in the available space and time.
The actual policy for recording is complex and ensures that
such an inferred-recording will never replace an explicit
recording on disk.

Privacy is preserved by this architecture in a number of ways.
There is no persistent (upload to upload) storage of any user
object on the server since we are computing show to show
correlations instead of the usual user-user approach. Not even an
anonymized version (hence necessitating the upload of full
thumbs profile) is maintained at the server. The communications
between the server and client are encrypted. Once the TCP-IP
connection is broken between server and client, the log file name
is anonymized so that the server no longer knows which TiVo the
log came from. The time and date-stamp of thumbs logs are also
reset to Jan 1, 1970 to preclude anyone from correlating thumbs
logs to error logs. All these measures made it quite difficult for us
to debug upload errors during development!

Figure 1. Sorted list of recommended shows

4. PERFORMANCE TASK
In this section we will describe the prediction performance task:
to create a list of upcoming shows sorted by the predicted degree
to which the user will like the show. This list is used to populate
the Suggestions List that appears in the TiVo interface (Figure 1).
It is also used by the program scheduler to decide which
suggested shows should be recorded if there is unused space on
the disk.

TiVo uses two algorithms for predicting how much the viewer
will like the show: a Bayesian content-based filtering algorithm
and the collaborative-filtering algorithm described in this paper. It
is necessary to augment collaborative-filtering with such a
content-based approach to address the cold-start problem
[Schein]: namely the situation in which for new users and shows
there is insufficient correlation data. Features for content-based
filtering include the genres of the show and the cast: actors,
directors etc.

In order to construct this list, TiVo first removes from
consideration episodes that the user has explicitly requested either
as a single recording or as a season pass since obviously we do
not want to recommend a show already scheduled for recording.
The remaining episodes are considered as 3-tuples as follows:
<seriesID, thumbs, confidence>

Note that we have mapped from episode to series here. If there is
more than one upcoming episode for a series, the first upcoming
one will be used as the representative for the series. In the three-
tuple, thumbs is an object with value from -3 to +3 and the
confidence is a integer from 0 to 255. The series are sorted first
by thumbs and then by confidence. In Figure 1, series that have
rated by the user at +n thumbs appear with n thumbs-up icons.
Series that are predicted by the TiVo to have +3 thumbs appear
between those that are rated at +3 and those rated at +2. This
ordering reinforces to the user that shows TiVo has more
confidence in bringing to her attention shows she has rated versus
shows it has predicted.

There are three paths by which a series may appear in the
suggestions list:

397

Industry/Government Track Paper

1. Explicitly rated but not scheduled for recording:
Consider the following scenario: You have rated 'Friends'
as +3 thumbs but for an upcoming episode, your spouse
has instead scheduled 'Nova' to be recorded. Such
'orphaned' episodes will appear in the Suggestions list to
remind you that there is an episode of a show you like that
is not scheduled to be recorded. This is especially useful
for movies: by perusing the Suggestions list you can see
upcoming old favorite movies you have rated highly but
may not have known were airing in the next few days.
Here the Suggestions list is acting as a scout or agent
because it is suggesting shows you already know about.
Since TiVo knows for sure you like this series, it assigns
the maximum confidence level (255) to this prediction.

2. Predicted by collaborative filtering: Collaborative
filtering predicts for each unrated series, a thumbs level
and a confidence. If the predicted thumbs level is +3, for
instance, the series will appear between the series with
+3 and +2 ratings. Collaborative filtering is allowed to use
the confidence range from 160 to 250.

3. Predicted by content-based filtering: Content-based
filtering also produces for each series, a thumbs level and
a confidence. In fact, it produces a two-tuple (<thumbs,
confidence>) for each thumbs level but we only utilize the
two-tuple for the thumbs level with the highest predicted
confidence. In Bayesian parlance, the predicted thumbs
level is a ordinal random variable and the confidence
corresponds to the posterior probability of that thumbs
level. Since Collaborative-Filtering is using a much richer
feature space than the simple features (genres and cast)
used by Content-Filtering, and since we have observed
Collaborative-Filtering to make better predictions than our
Content-Filtering approach, it was decided to assign the
lower confidence range ([0,128]) to Content-Filtering
and the higher range ([160,250]) to Collaborative-
Filtering.

4.1 Making Predictions
TiVo has a background Linux thread running at low priority that
makes content-based and collaborative-based predictions whilst
not interrupting the responsiveness of the system for the viewer.
This suggestions engine runs periodically; at least once a day. The
prediction algorithm is shown in Figure 2. The inputs to the
collaborative subsystem - Collaborative - of the suggestions
engine are the series to be predicted along with the set of
correlation pairs objects - Pairs. Each object in Pairs is a
three-tuple: <series, series, correlation>. For each series S that is
unrated, Collaborative finds the subset of the correlation
objects that predict for S; lets denote this set Pairs(S). Next,
Pairs(S) is sorted with respect to the absolute degree of the
correlation, which we will denote as r(s1,s2). Finally, a weighted
linear average over the top k correlates is computed to yield the
predicted thumbs level

as a floating point number. The integer
portion of this () is made visible in the suggestions list (Figure 1)
and the fractional part () is used a as a confidence level.
Unfortunately, for proprietary reasons we cannot reveal the exact
value of k or the optimizations we applied to this apparently
quadratic algorithm in order to make fast predictions. Previous
work in collaborative-filtering had to deal with issues of making
fast predictions at the server for many simultaneous users. This

issues goes away completely for us in our distributed client
architecture since in this averaging phase of the computation,
each TiVo is only making predictions for its own user.

If a show is unrated and does not have any correlation objects, we
invoke the Content-Filtering algorithm to produce a prediction =
< , > consisting of a predicted scalar thumbs level

and
confidence level . Series from these three sources (Content-
Filtering, Collaborative-Filtering and orphaned episodes) are
merged and sorted to produce the Suggestions list.

Some comments on the scale of the operation are in order. In
order to produce a suggestions list daily for each user we are
required to produce approximately 100 suggestions per user and
since we have one million users, this requires the system as a
whole to make on the order of 100 million suggestions daily. The
system of Breese et al. [3] from 1998 made 13 suggestions per
second on a 266MHZ Pentium so in one day (about 105 seconds)
it is capable of making on the order of 1 million suggestions. A
modern 2.6GHZ machine might make 10 million suggestions so
server-side, we would need 10 such machines running 24 hours a
day just to make the suggestions that the million TiVo boxes
make almost as a side-effect on the client-side. This refers to the
client-side weighted average calculation. It does not take into
account the more computationally challenging calculation of the
correlation pairs.

5. LEARNING
In this section we will first describe the scalable server-side
architecture which enables us to deal with the large volume of
series pairs correlations and in the second part we will describe
computational details we took to ensure statistical reliability of
the series-series correlation estimates.

There are approximately 300,000 distinct series airing in the USA
every week, so there are approximately 1011 correlations that
might need to be calculated. However, we do not have user
ratings for all the shows: the total number of ratings is 100 million
and the number of distinct rated shows is much less than this.
Thus the ratings are sparse with respect to the number of possible
series pairs and that poses a challenge if our correlation estimates
are to be accurate for the less popular series.

In order to compute the correlation between two series s1 and s2
it is sufficient to retain a 7 by 7 counts matrix where the count nij

in the ij-th cell of the matrix is the number of viewers who gave i
thumbs to s1 and j thumbs to s2. Figure 3 shows the distributed,
extensible server-side architecture. The basic insight is that

Collaborative(Series, Pairs):

 For each unrated series S in Series

 let Pairs(S) be subset of Pairs predicting for S

 consider elements <S1, S, r(S1,S)> in Pairs(S)

 sort Pairs(S) with respect to absolute r

 compute weighted linear average as in equation E

 Predictions := Predictions

<S, >

Output Predictions sorted by

Figure 2. Collaborative Filtering Algorithm

398

Industry/Government Track Paper

correlation pairs do not need to be computed for all 1011 pairs
since we are limited by data sparsity and server-side
computational resources. Data sparsity means that if we require,
for example, a minimum of 100 viewers to have rated both shows
in a pair, we only need to compute on the order of 30,000 pairs
with our current user population of one million client TiVos. The
minimum number of viewers required to have rated a show, min-
pair, is an important parameter to the server-side computation.

The second limit is computational: our current server setup is
surprisingly lean. If more server machines become available one
can simply decrease the value of min-pair which in turn will
allow us to calculate correlations for less popular shows and
provide more niche recommendations. Alternatively, as our user
population increases, even with our current value of 100 for min-
pair, the amount of calculation we will have to do will increase.
Our goal has always been to push out as many correlation pairs as
possible within budget limits so we can cater to as many niche
audiences as possible.

In Figure 3, the first layer (horizontal) consists of logs servers:
these machines accept thumbs logs and diagnostic error logs from
the TiVo boxes. Each log is assigned a fictitious user ID. The
lifespan of these user IDs is for the duration of the correlations
computation. During computation, the log of a single viewer may
be split among many machines indexed by series ID (second
layer). We need a temporary anonymized user ID so that when we
re-join the data to do pairs computation we can align thumbs for
different shows from the same user.

The second layer consists of machines which are indexed by
series ID. Each machine is assigned a series ID range and it is
responsible for counting the number of votes received for series in
its range. A second parameter to the architecture is min-
single - the minimum number of distinct users that have to give
thumbs to a series for it to be even considered for pairs
computation. Note that for a pair of series s1, s2 to have at
least min-pair ratings jointly, then s1 and s2 separately must
also have also received at least min-pair ratings. So it is an
admissible heuristic if we prune series that by themselves receive
less than min-pair ratings. However, if we set min-single
> min-pair then we run a possibility that we will prune series
that jointly may have met the min-pair criterion. For example,
if min-pair is 100 and min-single is 150 then we will
prune away two series each of which singly received 145 ratings -
yet it is possible (although unlikely) that had we retained them,
we would have found that that pair had jointly received more than
100 ratings. Machines at this second layer are responsible for
forwarding series IDs only of series that have been rated on at
least min-single TiVos. They also forward, for each surviving
series, the anonymized user IDs and thumbs values of all TiVos
that had ratings for that series.

Machines at the 3rd and final layer - the compute layer - are
partitioned over the space of pairs: series * series. For each series-
series pair, the machine first does a simple quick filtering
calculation: it computes the number of TiVos which yielded
ratings for that pair. If this number is less than min-pair, the
series-series pair is pruned. Otherwise, the machine can embark
on a more expensive calculation to compute the 7 by 7 matrix for
that pair and then to compute the linear correlation.

Figure 3. Parallelized, scalable server-side architecture

We use linear correlation rather than measures of association over
discrete variables (e.g. Phi coefficient or Cramer's V [9]) because
we treat the thumbs on each series as a discrete ordinal variable
rather than a nominal (categorical) variable. Doing so affords
greater statistical power. The output of this compute layer is a
vector of 3-tuples of the form <series, series, correlation>.

Another way of taming the scale problem is to not conduct these
server-side correlations for the entire series universe every day.
For example, if we only have one server machine, we can
compute 1/16 of the series-series space each day and thus
complete one calculation over 16 days. The disadvantage of this
approach of course is that the server cannot serve "fresh"
correlations each day; it can only serve new correlations every 16
days. However this not so much of a disadvantage since the
correlations between series tend not to vary much from day to
day, or even week to week. Over time ranges of months, however,
they do vary as the flavor of a series may change. To reduce
network bandwidth and cost, the size of the download from the
server to the TiVo is limited, so we round-robin serve TiVos over
the 16 day period so this reason also allows us to spread the
computation out over a multi-day period. Thus, within any given
16 day cycle, the server is serving pairs correlations from the
previous cycle and is working on completing its current cycle.

Now we examine the issue of the statistical reliability of the
correlations. The correlations we compute are estimates of the
"true" degree to which the two shows are correlated. We do not
know the true degree of correlation between two shows even
though we collect logs from all our viewers because viewers who
like those shows may not have given thumbs to them, because our
viewers are only a statistical (and non-random) subset of all
viewers and because the show may be newer than other shows so
fewer people have had a chance to give it a rating. For estimates

Log Collector 1

Boxes 1..100K

Log Collector m

Boxes 100K(m-1)..100Km

By-series Counter 1

Series 0..30K

By-series Counter n

Series 30k(n-1)..30kn

1: By-series-pair
Counter and
Correlations Calc.

P: By-series-pair
Counter and
Correlations Calc.

Transmit
correlation pairs to
TiVo Clients

399

Industry/Government Track Paper

based on sparse data, there may be significant error in the
estimated correlation. We need to take the confidence interval
around our point estimate into consideration. For popular shows,
we may have lots of evidence (support) to compute their pair-wise
correlations. Mathematically, support for a pair of series is the
number of TiVos from which we have thumbs data for both
shows. We may have a computed correlation of 0.8 between two
popular series with a support of 10000 and on the other hand we
may have a computed correlation of 0.8 between two rare series
based on a support of 10. Is there a principled way to differentiate
these two estimates; to assign a lower number to the 0.8
correlation arising from the support of 10? Currently we attack
this problem by computing a 95% confidence interval around the
correlation point estimate and we use the lower boundary of the
confidence interval as a pessimistic, support-penalized correlation
estimate. In our example, the confidence interval around the rare
shows will be wider so the lower boundary will be lower than the
lower boundary for the popular shows. Hence, after this support-
based correction, the two pairs will no longer be assigned the
same correlation number.

The Pearson correlation measure, r, we are using does not have a
normal distribution but if we apply Fisher's r-to-z transform, we
have a normally-distributed quantity z with mean

and standard-
deviation and 95% confidence interval [

Therefore, we can use the quantity and convert it
back to a r-value and use that r value as our estimate of
correlation.

Equation 3. Transform linear correlation to get normally
distributed variable z

For example, the 95% confidence interval around the popular
show pair may be [0.75, 0.85] and hence we will use the 0.75
number as its correlation. For the rare show pair, the confidence
interval may be [0.65, 0.90] so we will use the 0.65 correlation
estimate. Therefore, whereas the two pairs both had a 0.80
correlation estimate to begin with, now the show pair which has
more thumbs evidence and support receives a higher estimate than
the rare pair with less support.

6. FUTURE WORK
The number one item on our agenda for future work is a thorough
empirical evaluation of the quality of suggestions. So far we have
only evaluated the suggestions engine among TiVo employees by
setting up an internal website. This set of suggestions was also
used to bootstrap TiVo's server-side computations in 2000.

Other future work falls into three categories: user interface,
server-side, and client-side new features. In the user-interface,
suggestions can be used in a number of ways. Currently, the TiVo
Suggestions screen serves the dual functions of a Scout (finding
orphaned episodes of rated series) as well as suggesting unrated
shows that may be new to the user. We would like to separate
these in the user-interface. It would also be interesting to allow
programs to be sorted in the live-guide by predicted thumbs value.
So that, while watching live TV, one could list shows on other
channels sorted not by channel number, but by the probability

Figure 4. Plot of support (x-axis) versus correlation (y-axis)
for 100,000 shows

that you would like that other show. Undoubtedly, this would
pose some legal issues because networks pay more to obtain
lower numbered channels which are more likely to be channel
surfed and watched than some obscure network at channel 1000.

Another feature we have prototyped is 'Teach TiVo'. This feature
would allow the user to explicitly rate genres and cast members.
So, for example, you could directly tell TiVo that you like (all)
documentaries. It would also allow you to look at your complete
set of thumbs so if someone in your household or a visitor
inadvertently rated a program, you could see it and remove it. For
example, a visiting child may thumbs lots of children s shows
causing TiVo to suggest children s programming in an otherwise
adult household.

On the client, we might make improvements in the following
ways:

Aging: Since TiVo has been fielded for over four years,
some of the thumbs ratings in the profile may be several
years old and it would be nice to be able to decay or
remove the influence of such older thumbs.

Separate user-profiles: If there are multiple viewers with
disparate tastes, it might be beneficial to have them 'log in'
so that suggestions personalized to them could be served.
There are other advantages of 'logging in'. Advertisers
might be interested in who within the household is
watching. The viewer might be incented to log in if they
get a favorites channel lineup just for them, or suggestions
just for them.

Portfolio effect: Consider a viewer with two favorite
genres: science fiction and boating. Assume that the
number of shows and ratings for science fiction far
exceeds those for boating. TiVo may recommend plenty
of science fiction shows but very few boating shows. A
portfolio maximizing approach seeks to deliver the best set
of suggestions. By contrast, a probability maximizing
approach seeks to deliver suggestions, each of which
individually maximizes probability that the viewer will
like the show.

On the server, we might take TD-IDF steps so that shows that got
fewer votes would be more heavily weighted. Following Breese

400

Industry/Government Track Paper

[2] we could also give differential weights to users so that users
that only have a few votes would receive greater user weights.

7. CONCLUSION
TiVo has afforded us a rare opportunity to try collaborative
filtering on an very large scale. The collaborative filtering system
described here has been fielded in one million TiVo client boxes
and is used daily by millions of users. Each of these viewers has
rated approximately one hundred shows on average leading to a
total set of one hundred million ratings. TiVo uses an item-item
form of collaborative filtering with strong provisions for privacy
preservation. It uses k-nearest neighbor with Pearson correlation
to make show recommendations. Correlations computed over less
support are penalized in a principled way using the pessimistic
estimate from a 95% confidence interval. The collaborative
filtering system is augmented on the client by a content-based
Bayesian recommendation system to address the cold start
problem for new users and shows. The server architecture is
highly scalable with capacity for many more users and can be
throttled to provide more correlations to cover niche
recommendations. TiVo s novel distributed collaborative-filtering
approach reduces load on the server by having each client in
parallel make recommendations for its own user.

ACKNOWLEDGMENTS

Thanks to Howard Look and Jim Barton at TiVo. Thanks to Mike
Pazzani and Cliff Brunk for feedback..

8. REFERENCES
[1] Aggarwal C.C., Wolf J.L., Wu K-L. and Yu P.S. Horting.

(1999). Hatches an Egg: A New Graph-Theoretic Approach
to Collaborative Filtering. In KDD'99, Proceedings of the
Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 201-212. ACM
Press.

[2] Billsus, D. and Pazzani, M. (1998). Learning Collaborative
Information Filters, ICML 1998: 46-54.

[3] Breese J.S., Heckerman D and Kadie C. (1998). Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, Madison, WI. Morgan-
Kaufmann.

[4] Canny J. (2002). Collaborative Filtering with Privacy via
Factor Analysis, ACM SIGIR, Tampere, Finland.

[5] Cheeseman, P. and Stutz, J. (1995). Bayesian Classification
(AutoClass): Theory and Results. In Fayyad, U., Piatetsky-

Shapiro, G., Smyth, P. and Uthurusamy, R., ed.s, Advances
in Knowledge Discovery and Data Mining, 153-180. AAAI
Press.

[6] Digital Equipment Research Center.
http://www.research.digital.com/SRC/EachMovie/.

[7] Cohen, W.W. and Fan, W. (2000). Web-Collaborative
Filtering: Recommending Music by Crawling the Web. In
Proceedings of WWW9.

[8] Duda, R.O. and Hart, P.E. (1972). Pattern Classification and
Scene Analysis. Wiley, New York.

[9] Everitt B. S. (2002). The Cambridge Dictionary of Statistics.
Cambridge Press.

[10] Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. (1992).
Using Collaborative Filtering to Weave an Information
Tapestry. Communications of the ACM, 35, 12 pp. 61-70.

[11] Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995).
Recommending and evaluating choices in a virtual
community of use. In Proceedings of ACM CHI 95
Conference on Human Factors in Computing Systems, 194-
201.

[12] Järvelin, K. and Kekäläinen J. (2000). IR evaluation methods
for retrieving highly relevant documents. In Nicholas J.
Belkin, Peter Ingwersen, and Mun-Kew Leong, editors,
Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 41-48.

[13] Nichols D. (1997). Implicit rating and filtering. In
Proceedings of the Fifth DELIOS Workshop on Filtering and
Collaborative Filtering, Budapest, Hungary.

[14] Salton, G. and Buckley, C. (1988). Term weighting
approaches in automatic text retrieval. In Information
Processing and Management, 24, 5, pp. 513-523.

[15] Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. Item-Based
Collaborative Filtering Recommendation Algorithms. In
Proceedings of WWW10, May 2001.

401

Industry/Government Track Paper

