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ABSTRACT 
We describe the TiVo television show collaborative 
recommendation system which has been fielded in over one 
million TiVo clients for four years. Over this install base, TiVo 
currently has approximately 100 million ratings by users over 
approximately 30,000 distinct TV shows and movies. TiVo uses 
an item-item (show to show) form of collaborative filtering which 
obviates the need to keep any persistent memory of each user s 
viewing preferences at the TiVo server. Taking advantage of 
TiVo s client-server architecture has produced a novel 
collaborative filtering system in which the server does a minimum 
of work and most work is delegated to the numerous clients. 
Nevertheless, the server-side processing is also highly scalable 
and parallelizable. Although we have not performed formal 
empirical evaluations of its accuracy, internal studies have shown 
its recommendations to be useful even for multiple user 
households. TiVo s architecture also allows for throttling of the 
server so if more server-side resources become available, more 
correlations can be computed on the server allowing TiVo to 
make recommendations for niche audiences. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms. 

Keywords 
Collaborative-Filtering, Clustering Clickstreams 

1. INTRODUCTION 
With the proliferation of hundreds of TV channels, the TV viewer 
is faced with a search task to find the few shows she would like to 
watch. There may be quality information available on TV but it 
may be difficult to find. Traditionally, the viewer resorts to 
"channel surfing" which is akin to random or linear search. The 

mid 1990's in the USA saw the emergence of the TV-guide 
channel which listed showings on other channels: a form of 
indexing the content by channel number. This was followed in the 
late 1990's by the emergence of TiVo. TiVo consists of a  
television-viewing service as well as software and hardware. The 
client-side hardware consists of a TiVo set-top box which records 
TV shows on a hard-disk in the form of MPEG streams. Live TV 
and recorded shows are both routed through the hard-disk, 
enabling one to pause and rewind live TV as well as recordings. 
TiVo's main benefits are that it allows viewers to watch shows at 
times convenient for the viewer, convenient digital access to those 
shows and to find shows using numerous indices. Indices include 
genre, actor, director, keyword and most importantly for this 
paper: the probability that the viewer will like the show as 
predicted by a collaborative filtering system. 

The goal of a recommender system (an early one from 1992 is the 
Tapestry system [10]) is to predict the degree to which a user will 
like or dislike a set of items such as movies, TV shows, news 
articles or web sites. Most recommender systems can be 
categorized into two types: content-based recommenders and 
collaborative-based recommenders. Content-based recommenders 
use features such as the genre, cast and age of the show as 
attributes for a learning system. However, such features are only 
weakly predictive of whether viewers will like the show: there are 
only a few hundred genres and they lack the specificity required 
for accurate prediction.   

Collaborative filtering (CF) systems, on the other hand, use a 
completely different feature space: one in which the features are 
the other viewers. CF systems require the viewer for whom we are 
making predictions - henceforth called the "active viewer" - to 
have rated some shows. This 'profile' is used to find like-minded 
viewers who have rated those shows in a similar way. Then, for a 
show that is unrated by the active viewer, the system will find 
how that show is rated by those similar viewers and combine their 
ratings to produce a predicted rating for this unrated show. The 
idea is that since those like-minded viewers liked this show, that 
the active viewer may also like it. Since other viewers likes and 
dislikes can be very fine-grained, using them as features rather 
than content-based features leads to recommendations not just for 
the most popular shows but also for niche shows and audiences. 
We use a Bayesian content-based filtering system to overcome the 
cold-start problem (making predictions for new shows) for 

shows for which we do not have thumbs data from other users. 

The rest of the paper is organized as follows. In Section 2, we 
describe previous work on collaborative filtering systems, 
specially those making TV or movie recommendations. We 
outline the issues and the spectrum of approaches used to address  
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those issues. Section 3 gives more detail on the flow of data 
starting with a viewer rating a show and culminating in the TiVo 
client making a recommendation to the viewer for a new show. 
Section 4 explains the performance algorithm: how the server 
computes correlations between pairs of shows and how each 
client uses those correlations to make show suggestions for its 
viewer. Section 5 details the server-side learning needed to 
support computation of the correlations. Section 6 outlines future 
challenges and directions and we conclude by summarizing the 
state of this massively fielded system. 

2. PREVIOUS WORK 
Recommender systems have been around since the Tapestry [10] 
system from 1992 which relied on a small community of users to 
make recommendations for each other. However, the first system 
we know of for making movie recommendations was the Bellcore 
Video Recommender system from 1995 [11]. Recommender 
systems can be categorized into content-based filtering systems 
and collaborative-filtering systems. In turn, collaborative filtering 
systems can be categorized along the following major dimensions: 

1. "User-user" or "item-item" systems: In user-user systems, 
correlations (or similarities or distances) are computed between 
users. In item-item systems (e.g. TiVo and [15]), metrics are 
computed between items. 

2. Form of the learned model: Most collaborative filtering 
systems to date have used k-nearest neighbor models (also 
referred to as Memory-based systems or Instance-based systems) 
in user-user space. However there has been work using other 
model forms such as Bayesian networks [3], decision trees [3], 
cluster models [3], "Horting" (similarity over graphs) [1] and 
factor analysis [4]. 

3. Similarity or distance function: Memory-based systems and 
some others need to define a distance metric between pairs of 
items (or users). The most popular and one of the most effective 
measures used to date has been the simple and obvious Pearson 
product moment correlation coefficient (e.g. [9]) as shown in 
Equation 1 below. As applied for item-item systems, the equation 
computes the correlation r between two items (e.g. shows) : s1 
and s2. The summation is over all N users u that rated both items 
(shows). ts1u is the rating given by user u to show s1. Ts1 is the 
average rating (over those N users) given to s1. s1 is the standard 
deviation of ratings for s1. Similar definitions apply for the other 
show s2.  

 

Equation 1. Pearson correlation metric  

Other distance metrics used have included the cosine measure 
(which is a special case of the Pearson metric where means are 
zero) and extensions to the Pearson correlation which correct for 
the possibility that one user may rate programs more or less 
harshly than another user. Following in the track of TFIDF 
(Term-Frequency Inverse Document-Frequency) as in [14], 
another extension gives higher weight to users that rate 
infrequently; this is referred to as the 'inverse frequency' 
approach. Another approach is case amplification

 

in which a 

non-linear function is applied to the ratings so that a rating of +3, 
for example, may end up being much more than three times as 
much as a rating of +1. 

4. Combination function: Having defined a similarity metric 
between pairs of users (or items), the system needs to make 
recommendations for the active user for an unrated item (show). 
Memory-based systems typically use the k-nearest neighbor 
formula (e.g. [8]). Equation 2 shows how the k-nearest neighbor 
formula is used to predict the rating ts for a show s. The predicted 
rating is a weighted average of the ratings of correlated neighbors 
ts', weighted by the degree rs,s' to which the neighbor s' is 
correlated to s. Only neighbors with positive correlations are 
considered. 

 

Equation  2.  Weighted linear average computation for 
predicted thumbs level 

In item-item systems, the k-nearest neighbors are other items 
which can be thought of as points embedded in a space whose 
dimensions or axes correspond to users. In this view, equation 1 
can be regarded as computing a distance or norm between two 
items in a space of users. Correspondingly, in user-user systems, 
the analog of equation 1 would be computing the distance 
between two users in a space of items.  

Bayesian networks have also been used as combination functions; 
they naturally produce a posterior probability distribution over the 
rating space and cluster models produce a density estimate 
equivalent to the probability that the viewer will like the show. K-
nearest neighbor computations are equivalent to density 
estimators with piecewise constant densities. 

5. Evaluation criterion: The accuracy of the collaborative 
filtering algorithm may be measured either by using mean 
absolute error (MAE) or a ranking metric. Mean absolute error is 
just an average, over the test set, of the absolute difference 
between the true rating of an item and its rating as predicted by 
the collaborative filtering system. Whereas MAE evaluates each 
prediction separately and then forms an average, the ranking 
metric approach directly evaluates the goodness of  the entire 
ordered list of recommendations. This allows the  ranking metric 
approach to, for instance, penalize a mistake at rank 1 more 
severely than a mistake further down the list. Breese et al. [3] use 
an exponential decay model in which the penalty for making an 
incorrect prediction decreases exponentially with increasing rank 
in the recommendation list. The idea of scoring a ranked set is 
similar to the use of the DCG measure (discounted cumulative 
gain [12]), used by the information-retrieval community to 
evaluate search engine recommendations. Statisticians have also 
evaluated ranked sets using the Spearman rank correlation 
coefficient [9] and the kappa statistic [9].  

Now we summarize the findings of the most relevant previous 
work. Breese et al found that on the EachMovie data set [6], the 
best methods were Pearson correlation with inverse frequency and 
"Vector Similarity" (a cosine measure) with inverse frequency. 
These methods were statistically indistinguishable. Since Pearson 
correlation is very closely related to the cosine approach, this is 
not surprising. Case amplification was also found to yield an 
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added benefit. On this data set, the clustering approach (mixture 
of multinomial models using AutoClass [5]) was the runner-up 
followed by the Bayesian-network approach. The authors 
hypothesize that these latter approaches worked relatively poorly 
because they needed more data than was available in the 
EachMovie set (4119 users rating 1623 shows with the median 
number of ratings per show at 26).  Note that for the EachMovie 
data set, the true rating was a rating from 0 to 5, whereas the data 
sets on which Bayesian network did best only required a 
prediction for a binary random variable. 

Sarwar et al. [15] explore an item-item approach. They use a k- 
nearest neighbor approach, using Pearson correlation and cosine. 
Unfortunately for comparability to TiVo, their evaluation uses 
MAE rather than a ranking metric. Since TiVo presents a ranked 
list of suggestions to the viewer, the natural measure for its 
recommendation accuracy is the ranking metric, not MAE. 
Sarwar et al. find that for smaller training sizes, item-item has 
lower predictive error on the MovieLens data set than user-user 
but that both systems asymptote to the same level. Interestingly, 
they find the minimum test error is obtained with k=30 in the k-
nearest neighbor computation on their data set. They find again 
that cosine and Pearson perform similarly but the lowest error rate 
is obtained by their version of cosine which is adjusted for 
different user scales. The issue of user-scales is that even though 
all users may be rating shows over the same rating scale, one user 
may have a much narrower variance than another, or one may 
have a different mean than another. User-scale correction will 
normalize these users scores before comparing them to other 
users. 

Another issue facing recommendation systems is the speed with 
which they make recommendations. For systems like MovieLens 
which need to make recommendations in real-time for users 
connected via the Web, speed is of the essence. The TiVo 
architecture obviates this by having the clients make the 
recommendation instead of the server. Furthermore, each TiVo 
client only makes recommendations once a day in batch for all 
upcoming shows in the program guide whereas some 
collaborative systems may change their recommendations in real-
time based upon receiving new ratings from other users. 

Lack of space prevents us from discussing work on privacy 
preservation  (e.g. [4]), explainability1 and the cold-start issue: 
how to make predictions for a new user or item.  

3. BACKGROUND ON TIVO 
In this section we describe the flow of data that starts from a user 
rating a  show to upload of ratings to the server, followed by 
server-side computation of correlations, to download and finally 
to the TiVo client making recommendations for new shows. 

Every show in the TiVo universe has a unique identifying series 
ID assigned by Tribune Media Services (TMS). Shows come in 
two types: movies (and other one-off events) and series which are 
recurring programs such as 'Friends'. A series consists of a set of 

                                                                

 

1 An example of a collaborative-filtering system employing 
explainability is the Amazon.com feature: "Why was I 
recommended this". This feature explains the recommendation in 
terms of  previously rated or bought items. 

episodes. All episodes of a series have the same series ID. Each 
movie also has a "series" ID. Prediction is made at the series level 
so TiVo does not currently try to predict whether you will like 
one episode more than another. 

The flow of data starts with a user rating a show. There are two 
types of rating: explicit and implicit. We now describe each of 
these in turn. 

Explicit feedback: The viewer can use the thumbs-up and 
thumbs-down buttons on the TiVo remote control to indicate if 
she likes the show. She can rate a show from +3 thumbs for a 
show she likes to -3 thumbs for a show she hates (we will use the 
notation -n thumbs for n presses of the thumbs-down button).  
When a viewer rates a show, she is actually rating the series, not 
the episode. Currently (Jan. 2004), the average number of rated 
series per TiVo household is 98. Note that TiVo currently does 
not build a different recommendation model for each distinct 
viewer in the household 

 

in the remainder of the paper we will 
assume there is only one viewer per household.  

Implicit feedback: Since various previous collaborative filtering 
systems have noted that users are very unlikely to volunteer 
explicit feedback [13], in order to get sufficient data we decided 
that certain user actions would implicitly result in that program 
getting a rating. The only forms of explicit feedback are pressing 
the thumbs-up and thumbs-down buttons: all other user actions 
are candidates for implicit feedback. Currently, the only user 
action that results in an implicit rating happens when the user 
choose to record a previously unrated show. In this event, that 
show is assigned a thumbs rating of +1. Currently the prediction 
algorithms do not distinguish the +1 rating originating from 
explicit user feedback (thumbs-up button) from this implicit +1 
rating. Note that it is not clear if the +1 rating from a requested 
recording is stronger or weaker evidence than a +1 rating from a 
direct thumbs event. Viewers have been known to rate shows that 
they would like to be known as liking but that they don t actually 
watch. Some viewers may give thumbs up to high-brow shows 
but may actually schedule quite a different class of show for 
recording. One user action that could be an indicator even better 
than any of these candidates is number of minutes watched.  
Other possible user actions that could serve as events for implicit 
feedback are selection of a 'season pass', deletion, promotion or 
demotion of a season pass. A 'season pass' is a feature by which 
the viewer indicates that she wants to record multiple upcoming      
episodes of a given series.  

The following sequence details the events leading to TiVo making 
a show suggestion for the viewer:  

1. Viewer feedback: Viewer actions such as pressing the 
thumbs buttons and requesting show recordings are noted by 
the TiVo client to build a profile of likes and dislikes for 
each user.  

2. Transmit profile: Periodically, each TiVo uploads its 
viewer's entire thumbs profile to the TiVo server. Indeed, the 
entire profile rather is sent, rather than an incremental upload  
because we designed the server so that it does not       
maintain even a persistent anonymized ID for the user. As a 
result the server has no way of tying together incremental 
thumbs profiles and so it becomes necessary to upload the 
entire profile each time. We have found uploading the entire 

396

Industry/Government Track Paper



profile does not constitute an onerous burden on the upload 
time. 

3. Anonymization: The server anonymizes the thumbs 
profile log, resetting the file transfer date to Jan. 1 1970 so 
transfer time cannot be used to trace which TiVo the file 
came from.  

4. Server-side computation: The server computes pair-wise 
correlations between series for series "of interest". Next, it 
prepares  a package consisting of correlations pairs for 
download to TiVos. See Section 5 for more detail on which 
series are deemed "of interest". 

5. Correlation download: Correlation pairs are downloaded 
to certain TiVos. To reduce download stress for the network, 
the download is round-robin'd across all TiVos so that each 
TiVo only receives new correlation pairs every N days. Each 
TiVo currently receives a download of 320KB 
(uncompressed) consisting of twenty-eight thousand 
correlation pairs, averaging 11.5 bytes per pair.  

6. Client-side computation: The collaborative-filtering 
algorithm on each TiVo iterates through its program guide,      
using the download package to make predictions for unrated 
shows. Note that each TiVo makes recommendations over a 
different set of programs, determined by which channels are 
received at that TiVo and which series have not been rated at 
that TiVo. Whereas most collaborative filtering systems have 
to worry about server response time for making 
recommendations to all connected users, because the TiVo 
clients make all the recommendations, this task does not tax 
the server.  

7. Suggestions List: The collaborative predictions are 
combined with the content-based predictions and already-
rated shows to assemble a list of shows that TiVo thinks the 
viewer would like to watch (Figure 1).  

8. Inferred-recordings: If there is enough space on the hard 
disk and if there are not many shows explicitly requested by 
the viewer to be recorded in the short-term, TiVo will use 
that spare space and time to record the show highest in the 
suggestions list that will fit in the available space and time. 
The actual policy for recording is complex and ensures that 
such an inferred-recording will never replace an explicit 
recording on disk.   

Privacy is preserved by this architecture in a number of ways. 
There is no persistent (upload to upload) storage of any user 
object on the server since we are computing show to show 
correlations instead of the usual user-user approach. Not even an 
anonymized version (hence necessitating the upload of full 
thumbs profile) is maintained at the server. The communications 
between the server and client are encrypted. Once the TCP-IP 
connection is broken between server and client, the log file name 
is anonymized so that the server no longer knows which TiVo the 
log came from. The time and date-stamp of thumbs logs are also 
reset to Jan 1, 1970 to preclude anyone from correlating thumbs 
logs to error logs. All these measures made it quite difficult for us 
to debug upload errors during development!  

 

Figure 1. Sorted list of recommended shows   

4. PERFORMANCE TASK 
In this section we will describe the prediction performance task: 
to create a list of upcoming shows sorted by the predicted degree 
to which the user will like the show. This list is used to populate 
the Suggestions List that appears in the TiVo interface (Figure 1). 
It is also used by the program scheduler to decide which 
suggested shows should be recorded if there is unused space on 
the disk. 

TiVo uses two algorithms for predicting how much the viewer 
will like the show: a Bayesian content-based filtering algorithm 
and the collaborative-filtering algorithm described in this paper. It 
is necessary to augment collaborative-filtering with such a 
content-based approach to address the cold-start problem 
[Schein]: namely the situation in which for new users and shows 
there is insufficient correlation data. Features for content-based 
filtering include the genres of the show and the cast: actors, 
directors etc.  

In order to construct this list, TiVo first removes from 
consideration episodes that the user has explicitly requested either 
as a single recording or as a season pass since obviously we do 
not want to recommend a show already scheduled for recording. 
The remaining episodes are considered as 3-tuples as follows: 
<seriesID, thumbs, confidence> 

Note that we have mapped from episode to series here. If there is 
more than one upcoming episode for a series, the first upcoming 
one will be used as the representative for the series. In the three-
tuple, thumbs is an object with value from -3 to +3 and the 
confidence is a integer from 0 to 255. The series are sorted first 
by thumbs and then by confidence. In Figure 1, series that have 
rated by the user at +n thumbs appear with n thumbs-up icons. 
Series that are predicted by the TiVo to have +3 thumbs appear 
between those that are rated at +3 and those rated at +2. This 
ordering reinforces to the user that shows TiVo has more 
confidence in bringing to her attention shows she has rated versus 
shows it has predicted.  

There are three paths by which a series may appear in the 
suggestions list: 
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1. Explicitly rated but not scheduled for recording:    
Consider the following scenario: You have rated 'Friends' 
as +3 thumbs but for an upcoming episode, your spouse 
has instead scheduled 'Nova' to be recorded. Such 
'orphaned' episodes will appear in the Suggestions list to 
remind you that there is an episode of a show you like that 
is not scheduled to be recorded. This is especially useful 
for movies: by perusing the Suggestions list you can see 
upcoming old favorite movies you have rated highly but 
may not have known were airing in the next few days. 
Here the Suggestions list is acting as a scout or agent 
because it is suggesting shows you already know about. 
Since TiVo knows for sure you like this series, it assigns 
the maximum confidence level (255) to this prediction.  

2. Predicted by collaborative filtering: Collaborative 
filtering predicts for each unrated series, a thumbs level    
and a confidence. If the predicted thumbs level is +3, for    
instance, the series will appear between the series with    
+3 and +2 ratings. Collaborative filtering is allowed to use 
the confidence range from 160 to 250. 

3. Predicted by content-based filtering: Content-based 
filtering also produces for each series, a thumbs level and 
a confidence. In fact, it produces a two-tuple (   <thumbs, 
confidence>) for each thumbs level but we only utilize the 
two-tuple for the thumbs level with the highest predicted 
confidence. In Bayesian parlance, the predicted thumbs 
level is a ordinal random variable and the confidence 
corresponds to the posterior probability of that thumbs 
level. Since Collaborative-Filtering is using a much richer 
feature space than the simple features (genres and cast) 
used by Content-Filtering, and since we have observed 
Collaborative-Filtering to make better predictions than our 
Content-Filtering approach, it was decided to assign the 
lower confidence range ([0,128])    to  Content-Filtering 
and the higher range ([160,250]) to Collaborative-
Filtering. 

4.1 Making Predictions 
TiVo has a background Linux thread running at low priority that 
makes content-based and collaborative-based predictions whilst 
not interrupting the responsiveness of the system for the viewer. 
This suggestions engine runs periodically; at least once a day. The 
prediction algorithm is shown in Figure 2. The inputs to the 
collaborative subsystem - Collaborative - of the  suggestions 
engine are the series to be predicted along with the set of 
correlation pairs objects - Pairs. Each object in Pairs is a 
three-tuple: <series, series, correlation>. For each series S that is 
unrated, Collaborative finds the subset of the correlation 
objects that predict for S; lets denote this set Pairs(S). Next, 
Pairs(S) is sorted with respect to the absolute degree of the 
correlation, which we will denote as r(s1,s2). Finally, a weighted 
linear average over the top k correlates is computed to yield the 
predicted thumbs level 

 

as a floating point number. The integer 
portion of this ( ) is made visible in the suggestions list (Figure 1) 
and the fractional part ( ) is used a as a confidence level. 
Unfortunately, for proprietary reasons we cannot reveal the exact 
value of k or the optimizations we applied to this apparently 
quadratic algorithm in order to make fast predictions. Previous 
work in collaborative-filtering had to deal with issues of making 
fast predictions at the server for many simultaneous users. This 

issues goes away completely for us in our distributed client 
architecture since in this averaging phase of the computation, 
each TiVo is only making predictions for its own user.            

If a show is unrated and does not have any correlation objects, we 
invoke the Content-Filtering algorithm to produce a prediction  = 
< , > consisting of a predicted scalar thumbs level 

 

and 
confidence level . Series from these three sources (Content-
Filtering, Collaborative-Filtering and orphaned episodes) are 
merged and sorted to produce the Suggestions list. 

Some comments on the scale of the operation are in order. In 
order to produce a suggestions list daily for each user we are 
required to produce approximately 100 suggestions per user and 
since we have one million users, this requires the system as a 
whole to make on the order of 100 million suggestions daily. The 
system of Breese et al. [3] from 1998 made 13 suggestions per 
second on a 266MHZ Pentium so in one day (about 105 seconds) 
it is capable of making on the order of 1 million suggestions. A 
modern 2.6GHZ machine might make 10 million suggestions so 
server-side, we would need 10 such machines running 24 hours a 
day just to make the suggestions that the million TiVo boxes 
make almost as a side-effect on the client-side. This refers to the 
client-side weighted average calculation. It does not take into 
account the more computationally challenging calculation of the 
correlation pairs. 

5. LEARNING 
In this section we will first describe the scalable server-side 
architecture which enables us to deal with the large volume of 
series pairs correlations and in the second part we will describe 
computational details we took to ensure statistical reliability of 
the series-series correlation estimates.  

There are approximately 300,000 distinct series airing in the USA 
every week, so there are approximately 1011  correlations that 
might need to be calculated. However, we do not have user 
ratings for all the shows: the total number of ratings is 100 million 
and the number of distinct rated shows is much less than this. 
Thus the ratings are sparse with respect to the number of possible 
series pairs and that poses a challenge if our correlation estimates 
are to be accurate for the less popular series. 

In order to compute the correlation between two series s1 and s2 
it is sufficient to retain a 7 by 7 counts matrix where the count nij 

in the ij-th cell of the matrix is the number of viewers who gave i 
thumbs to s1 and j  thumbs to s2. Figure 3 shows the distributed, 
extensible server-side architecture. The basic insight is that 

Collaborative(Series, Pairs): 

  For each unrated series S in Series 

    let Pairs(S) be subset of Pairs predicting for S 

    consider elements <S1, S, r(S1,S)> in Pairs(S) 

    sort Pairs(S) with respect to absolute r 

    compute weighted linear average  as in equation E 

    Predictions := Predictions 

 

<S, > 

Output Predictions sorted by 

 

Figure 2. Collaborative Filtering Algorithm 
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correlation pairs do not need to be computed for all 1011 pairs 
since we are limited by data sparsity and server-side 
computational resources. Data sparsity means that if we require, 
for example, a minimum of 100 viewers to have rated both shows 
in a pair, we only need to compute on the order of 30,000 pairs 
with our current user population of one million client TiVos. The 
minimum number of viewers required to have rated a show, min-
pair, is an important parameter to the server-side computation.  

The second limit is computational: our current server setup is 
surprisingly lean. If more server machines become available one 
can simply decrease the value of min-pair which in turn will 
allow us to calculate correlations for less popular shows and 
provide more niche recommendations. Alternatively, as our user 
population increases, even with our current value of 100 for min-
pair, the amount of calculation we will have to do will increase. 
Our goal has always been to push out as many correlation pairs as 
possible within budget limits so we can cater to as many niche 
audiences as possible. 

In Figure 3, the first layer (horizontal) consists of logs servers: 
these machines accept thumbs logs and diagnostic error logs from 
the TiVo boxes. Each log is assigned a fictitious user ID. The 
lifespan of these user IDs is for the duration of the correlations 
computation. During computation, the log of a single viewer may 
be split among many machines indexed by series ID (second 
layer). We need a temporary anonymized user ID so that when we 
re-join the data to do pairs computation we can align thumbs for 
different shows from the same user. 

The second layer consists of machines which are indexed by 
series ID. Each machine is assigned a series ID range and it is 
responsible for counting the number of votes received for series in 
its range. A second parameter to the architecture is  min-
single - the minimum number of distinct users that have to give 
thumbs to a series for it to be even considered for pairs 
computation. Note that for a pair of series s1, s2 to have at 
least min-pair ratings jointly, then s1 and s2 separately must 
also have also received at least min-pair ratings. So it is an 
admissible heuristic if we prune series that by themselves receive 
less than min-pair ratings. However, if we set min-single 
> min-pair then we run a possibility that we will prune series 
that jointly may have met the min-pair criterion. For example, 
if min-pair is 100 and min-single is 150 then we will 
prune away two series each of which singly received 145 ratings - 
yet it is possible (although unlikely) that had we retained them, 
we would have found that that pair had jointly received more than 
100 ratings. Machines at this second layer are responsible for 
forwarding series IDs only of series that have been rated on at 
least min-single TiVos. They also forward, for each surviving 
series, the anonymized user IDs and thumbs values of all TiVos 
that had ratings for that series. 

Machines at the 3rd and final layer - the compute layer -  are 
partitioned over the space of pairs: series * series. For each series-
series pair, the machine first does a simple quick filtering 
calculation: it computes the number of TiVos which yielded 
ratings for that pair. If this number is less than min-pair, the 
series-series pair is pruned. Otherwise, the machine can embark 
on a more expensive calculation to compute the 7 by 7 matrix for 
that pair and then to compute the linear correlation.    

Figure 3. Parallelized, scalable server-side architecture  

We use linear correlation rather than measures of association over 
discrete variables (e.g. Phi coefficient or Cramer's V [9]) because 
we treat the thumbs on each series as a discrete ordinal variable 
rather than a nominal (categorical) variable. Doing so affords 
greater statistical power. The output of this compute layer is a 
vector of 3-tuples of the form <series, series, correlation>. 

Another way of taming the scale problem is to not conduct these 
server-side correlations for the entire series universe every day. 
For example, if we only have one server machine, we can 
compute 1/16 of the series-series space each day and thus 
complete one calculation over 16 days. The disadvantage of this 
approach of course is that the server cannot serve "fresh" 
correlations each day; it can only serve new correlations every 16 
days. However this not so much of a disadvantage since the 
correlations between series tend not to vary much from day to 
day, or even week to week. Over time ranges of months, however, 
they do vary as the flavor of a series may change. To reduce 
network bandwidth and cost, the size of the download from the 
server to the TiVo is limited, so we round-robin serve TiVos over 
the 16 day period so this reason also allows us to spread the 
computation out over a multi-day period. Thus, within any given  
16 day cycle, the server is serving pairs correlations from the 
previous cycle and is working on completing its current cycle. 

Now we examine the issue of the statistical reliability of the 
correlations. The correlations we compute are estimates of the 
"true" degree to which the two shows are correlated. We do not 
know the true degree of correlation between two shows even 
though we collect logs from all our viewers because viewers who 
like those shows may not have given thumbs to them, because our 
viewers are only a statistical (and non-random) subset of all 
viewers and because the show may be newer than other shows so 
fewer people have had a chance to give it a rating. For estimates 
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based on sparse data, there may be significant error in the 
estimated correlation. We need to take the confidence interval 
around our point estimate into consideration. For popular shows, 
we may have lots of evidence (support) to compute their pair-wise 
correlations. Mathematically, support for a pair of series is the 
number of TiVos from which we have thumbs data for both 
shows. We may have a computed correlation of 0.8 between two 
popular series with a support of 10000 and on the other hand we 
may have a computed correlation of 0.8 between two rare series 
based on a support of 10. Is there a principled way to differentiate 
these two estimates; to assign a lower number to the 0.8 
correlation arising from the support of 10? Currently we attack 
this problem by computing a 95% confidence interval around the 
correlation point estimate and we use the lower boundary of the 
confidence interval as a pessimistic, support-penalized correlation 
estimate. In our example, the confidence interval around the rare 
shows will be wider so the lower boundary will be lower than the 
lower boundary for the popular shows. Hence, after this support-
based correction, the two pairs will no longer be assigned the 
same correlation number. 

The Pearson correlation measure, r, we are using does not have a 
normal distribution but if we apply Fisher's r-to-z transform, we 
have a normally-distributed quantity z with mean 

 

and standard-
deviation  and 95% confidence interval [

 

Therefore, we can use the quantity  and convert it 
back to a r-value and use that r value as our estimate of 
correlation. 

 

Equation 3. Transform linear correlation to get normally 
distributed variable z 

For example, the 95% confidence interval around the popular 
show pair may be [0.75, 0.85] and hence we will use the 0.75 
number as its correlation. For the rare show pair, the confidence 
interval may be [0.65, 0.90] so we will use the 0.65 correlation 
estimate. Therefore, whereas the two pairs both had a 0.80 
correlation estimate to begin with, now the show pair which has 
more thumbs evidence and support receives a higher estimate than 
the rare pair with less support. 

6. FUTURE WORK 
The number one item on our agenda for future work is a thorough 
empirical evaluation of the quality of suggestions. So far we have 
only evaluated the suggestions engine among TiVo employees by 
setting up an internal website. This set of suggestions was also 
used to bootstrap TiVo's server-side computations in 2000.  

Other future work falls into three categories: user interface, 
server-side, and client-side new features. In the user-interface, 
suggestions can be used in a number of ways. Currently, the TiVo 
Suggestions screen serves the dual functions of a Scout (finding 
orphaned episodes of rated series) as well as suggesting unrated 
shows that may be new to the user. We would like to separate 
these in the user-interface. It would also be interesting to allow 
programs to be sorted in the live-guide by predicted thumbs value. 
So that, while watching live TV, one could list shows on other 
channels sorted not by channel number, but  by the probability 

 

Figure 4. Plot of support (x-axis) versus correlation (y-axis) 
for 100,000 shows 

that you would like that other show. Undoubtedly, this would 
pose some legal issues because networks pay more to obtain 
lower numbered channels which are more likely to be channel 
surfed and watched than some obscure network at channel 1000.  

Another feature we have prototyped is 'Teach TiVo'. This feature 
would allow the user to explicitly rate genres and cast members. 
So, for example, you could directly tell TiVo that you like (all) 
documentaries. It would also allow you to look at your complete 
set of thumbs so if someone in your household or a visitor 
inadvertently rated a program, you could see it and remove it. For 
example, a visiting child may thumbs lots of children s shows 
causing TiVo to suggest children s programming in an otherwise 
adult household. 

On the client, we might make improvements in the following 
ways: 

 

Aging: Since TiVo has been fielded for over four years, 
some of the thumbs ratings in the profile may be  several 
years old and it would be nice to be able to decay or 
remove the influence of such older thumbs. 

 

Separate user-profiles: If there are multiple viewers with   
disparate tastes, it might be beneficial to have them 'log in' 
so that suggestions personalized to them could be served. 
There are other advantages of 'logging in'. Advertisers 
might be interested in who within the household is 
watching. The viewer might be incented to log in if they 
get a favorites channel lineup just for them, or suggestions 
just for them.  

 

Portfolio effect: Consider a viewer with two favorite 
genres: science fiction and boating. Assume that the 
number of shows and ratings for science fiction far 
exceeds those for boating. TiVo may recommend plenty   
of science fiction shows but very few boating shows. A 
portfolio maximizing approach seeks to deliver the best set 
of suggestions. By contrast, a probability maximizing 
approach seeks to deliver suggestions, each of which 
individually maximizes probability that the viewer will 
like the show. 

On the server, we might take TD-IDF steps so that shows that got 
fewer votes would be more heavily weighted. Following Breese 
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[2] we could also give differential weights to users so that users 
that only have a few votes would receive greater user weights. 

7. CONCLUSION 
TiVo has afforded us a rare opportunity to try collaborative 
filtering on an very large scale. The collaborative filtering system 
described here has been fielded in one million TiVo client boxes 
and is used daily by millions of users. Each of these viewers has 
rated  approximately one hundred shows on average leading to a 
total set of one hundred million ratings. TiVo uses an item-item 
form of collaborative filtering with strong provisions for privacy 
preservation. It uses k-nearest neighbor with Pearson correlation 
to make show recommendations. Correlations computed over less 
support are penalized in a principled way using the pessimistic 
estimate from a 95% confidence interval. The collaborative 
filtering system is augmented on the client by a content-based 
Bayesian recommendation system to address the cold start 
problem for new users and shows. The server architecture is 
highly scalable with capacity for many more users and can be 
throttled to provide more correlations to cover niche 
recommendations. TiVo s novel distributed collaborative-filtering 
approach reduces load on the server by having each client in 
parallel make recommendations for its own user. 
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