Recommender Systems

Collaborative Filtering & Content-Based Recommending
Recommender Systems

- Systems for recommending items (e.g. books, movies, CD’s, web pages, newsgroup messages) to users based on examples of their preferences.
- Many on-line stores provide recommendations (e.g. Amazon, CDNow).
- Recommenders have been shown to substantially increase sales at on-line stores.
- There are two basic approaches to recommending:
 - Collaborative Filtering (a.k.a. social filtering)
 - Content-based
Personalization

• Recommenders are instances of personalization software.

• Personalization concerns adapting to the individual needs, interests, and preferences of each user.

• Includes:
 – Recommending
 – Filtering
 – Predicting (e.g. form or calendar appt. completion)

• From a business perspective, it is viewed as part of Customer Relationship Management (CRM).
Machine Learning and Personalization

- Machine Learning can allow learning a user model or profile of a particular user based on:
 - Sample interaction
 - Rated examples
- This model or profile can then be used to:
 - Recommend items
 - Filter information
 - Predict behavior
Collaborative Filtering

- Maintain a database of many users’ ratings of a variety of items.
- For a given user, find other similar users whose ratings strongly correlate with the current user.
- Recommend items rated highly by these similar users, but not rated by the current user.
- Almost all existing commercial recommenders use this approach (e.g. Amazon).
Collaborative Filtering

User Database

Active User

Correlation Match

Extract Recommendations
Collaborative Filtering Method

- Weight all users with respect to similarity with the active user.
- Select a subset of the users (neighbors) to use as predictors.
- Normalize ratings and compute a prediction from a weighted combination of the selected neighbors’ ratings.
- Present items with highest predicted ratings as recommendations.
Similarity Weighting

• Typically look for similarity of ratings for active user, \(a \), and another user, \(u \).

 – Idea is to for a vectors \(r_a \) and \(r_u \) of the ratings of items that both \(a \) and \(u \) have both rated.

 – Then determine how alike \(a \) and \(u \) are based of the similarity of those vectors.

 • How do you determine how similar?

 – With others rated can:

 • Average over population of “raters” and find gaps in active user
 • Pick a highly ranked rater and find a gap

 – What is the difference
Significance Weighting

• Important not to trust correlations based on very few co-rated items.
• Include *significance weights*, $s_{a,u}$, based on number of co-rated items, m.
Neighbor Selection

- For a given active user, a, select correlated users to serve as source of predictions.
- Standard approach is to use the most similar n users, u, based on similarity weights, $w_{a,u}$
- Alternate approach is to include all users whose similarity weight is above a given threshold.
Rating Prediction

• Predict a rating, $p_{a,i}$, for each item i, for active user, a, by using the n selected neighbor users.
• To account for users different ratings levels, base predictions on differences from a user’s average rating.
• Weight users’ ratings contribution by their similarity to the active user.
Problems with Collaborative Filtering

- **Cold Start**: There needs to be enough other users already in the system to find a match.
- **Sparsity**: If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items.
- **First Rater**: Cannot recommend an item that has not been previously rated.
 - New items
 - Esoteric items
- **Popularity Bias**: Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.
Content-Based Recommending

• Recommendations are based on information on the content of items rather than on other users’ opinions.

• Uses a machine learning algorithm to induce a profile of the users preferences from examples based on a featural description of content.

• Some previous applications:
 – Newsweeder (Lang, 1995)
 – Syskill and Webert (Pazzani et al., 1996)
Advantages of Content-Based Approach

• No need for data on other users.
 – No cold-start or sparsity problems.

• Able to recommend to users with unique tastes.

• Able to recommend new and unpopular items
 – No first-rater problem.

• Can provide explanations of recommended items by listing content-features that caused an item to be recommended.
Disadvantages of Content-Based Method

- Requires content that can be encoded as meaningful features.
- Users’ tastes must be represented as a learnable function of these content features.
- Unable to exploit quality judgments of other users.
 - Unless these are somehow included in the content features.
Evaluating Collaborative Filtering

• Different problems require different solutions
 – More users than topics
 •
 – More topic than users
 •
 – Most users have seen / are aware of most of the universe
 •
 – Most users have seen very little of the universe
 •
What is “Accuracy” in CF

• Predicting what the user would have picked?
 – ie., look only at single best
• Frequency of ourtrageous incorrectness
• Ability to predict / suggest novel behavior
• ROC curves
• Explainability
• Increase in purchases
 – Recommendations followed

• On the EachMovie dataset all Cfs systems have about the same accuracy
Definition of accuracy is task dependent

- Annotation in Context
- Find the best
 - Amazon?
- Find all good
 - Pagerank?
- Recommend a sequence
 - The DJ task – pandora.com
- Make browsing “interesting”
- “Find like souls”
 - So I can use their recommendations in the future.
 - Itunes?
Why do people put in recommendations?

• Improve profile
 – I want to see better things in the future

• Self expression
 – Many on-line reviews fall into this category

• Help others
 – Most of the rest of on-line reviews fall here

• Influence Others
 – Reviews that are really commercials

• Each motivation puts a different bias into recommendations
Domain Features affect recommendations

• **Novelty vs Quality**
 – Users want things that they did not know about but not something they definitely would not have picked
 • TiVo “my TiVo thinks I am a gay man for the 1970's”
 • In ML reinforcement learning, this is the “exploration/exploitation tradeoff”

• **Cost / Benefit**
 – What is the cost of a bad recommendation?
 – Netflicks, book of the month club

• **True Granularity**
 – Is a 1-10 scale right or is it really just y/n
LIBRA
Learning Intelligent Book Recommending Agent

• Content-based recommender for books using information about titles extracted from Amazon.
• Uses information extraction from the web to organize text into fields:
 – Author
 – Title
 – Editorial Reviews
 – Customer Comments
 – Subject terms
 – Related authors
 – Related titles
LIBRA System

Amazon Pages

Information Extraction

LIBRA Database

Rated Examples

Machine Learning

Learner

User Profile

Predictor

Recommendations

1.
2.
3.
...
Sample Extracted Information

Title: <The Age of Spiritual Machines: When Computers Exceed Human Intelligence>
Author: <Ray Kurzweil>
Price: <11.96>
Publication Date: <January 2000>
ISBN: <0140282025>
Related Titles: <Title: <Robot: Mere Machine or Transcendent Mind>
 Author: <Hans Moravec> >

... Reviews: <Author: <Amazon.com Reviews> Text: <How much do we humans…> >
 ... Comments: <Stars: <4> Author: <Stephen A. Haines> Text:<Kurzweil has …> >
 ... Related Authors: <Hans P. Moravec> <K. Eric Drexler>…
Subjects: <Science/Mathematics> <Computers> <Artificial Intelligence> …
Libra Content Information

• Libra uses this extracted information to form “bags of words” for the following slots:
 – Author
 – Title
 – Description (reviews and comments)
 – Subjects
 – Related Titles
 – Related Authors
Libra Overview

• User rates selected titles on a 1 to 10 scale.

• Libra uses a naïve Bayesian text-categorization algorithm to learn a profile from these rated examples.
 – Rating 6–10: Positive
 – Rating 1–5: Negative

• The learned profile is used to rank all other books as recommendations based on the computed posterior probability that they are positive.

• User can also provide explicit positive/negative keywords, which are used as priors to bias the role of these features in categorization.
Bayesian Categorization in LIBRA

- Model is generalized to generate a vector of bags of words (one bag for each slot).
 - Instances of the same word in different slots are treated as separate features:
 - “Chrichton” in author vs. “Chrichton” in description
- Training examples are treated as weighted positive or negative examples when estimating conditional probability parameters:
 - An example with rating r is given:
 - **positive** probability: $(r - 1)/9$
 - **negative** probability: $(10 - r)/9$
Implementation

• Stopwords removed from all bags.
• A book’s title and author are added to its own related title and related author slots.
• All probabilities are smoothed using Laplace estimation to account for small sample size.
• Lisp implementation is quite efficient:
 – Training: 20 exs in 0.4 secs, 840 exs in 11.5 secs
 – Test: 200 books per second
Movie Domain

• *EachMovie* Dataset [Compaq Research Labs]
 – Contains user ratings for movies on a 0–5 scale.
 – 72,916 users (avg. 39 ratings each).
 – 1,628 movies.
 – Sparse user-ratings matrix – (2.6% full).

• Crawled Internet Movie Database (*IMDb*)
 – Extracted content for titles in *EachMovie*.

• Basic movie information:
 – Title, Director, Cast, Genre, etc.

• Popular opinions:
 – User comments, Newspaper and Newsgroup reviews, etc.
Content-Boosted Collaborative Filtering

EachMovie → Web Crawler → IMDb

Movie Content Database

User Ratings Matrix (Sparse) → Content-based Predictor

Full User Ratings Matrix → Collaborative Filtering

Active User Ratings

Recommendations
Content-Boosted CF - I

Content-Based Predictor

User-ratings Vector

Training Examples

Pseudo User-ratings Vector

- User-rated Items
- Unrated Items
- Items with Predicted Ratings
Content-Boosted CF - II

- Compute pseudo user ratings matrix
 - Full matrix – approximates actual full user ratings matrix
- Perform CF
 - Using Pearson corr. between pseudo user-rating vectors
Experimental Method

• Used subset of EachMovie (7,893 users; 299,997 ratings)

• Test set: 10% of the users selected at random.
 – Test users that rated at least 40 movies.
 – Train on the remainder sets.

• Hold-out set: 25% items for each test user.
 – Predict rating of each item in the hold-out set.

• Compared CBCF to other prediction approaches:
 – Pure CF
 – Pure Content-based
 – Naïve hybrid (averages CF and content-based predictions)
Metrics

• Mean Absolute Error (MAE)
 – Compares numerical predictions with user ratings

• ROC sensitivity [Herlocker 99]
 – How well predictions help users select *high-quality* items
 – Ratings: 4 considered “good”; < 4 considered “bad”

• Paired t-test for statistical significance
Active Learning
(Sample Section, Learning with Queries)

• Used to reduce the number of training examples required.
• System requests ratings for specific items from which it would learn the most.
• Several existing methods:
 – Uncertainty sampling
 – Committee-based sampling
Semi-Supervised Learning
(Weakly Supervised, Bootstrapping)

• Use wealth of unlabeled examples to aid learning from a small amount of labeled data.
• Several recent methods developed:
 – Semi-supervised EM (Expectation Maximization)
 – Co-training
Conclusions

- Recommending and personalization are important approaches to combating information over-load.
- Machine Learning is an important part of systems for these tasks.
- Collaborative filtering has problems.
- Content-based methods address these problems (but have problems of their own).
- Integrating both is best.
Tivo Recommendations from an article in KDD 2004

• Determines k nearest neighbors to a user based on similarity their ranking
 – Explicit -- their “thumbs” rankings” (claim is that average household has rated 98 items)
 – Implicit – user chooses to record a show
 • Could also use simply watching based on number of minutes watched (problems?)
 • What else?
 – e.g., selecting a recorded show to watch
Tivo in practice

- Viewer gives feedback
- Feedback downloaded to Tivo (nightly)
- Feedback anonymized
- Determine highly correlated users
- Upload correlations (28000 pairs)
- Predict ratings of unrated shows
- Build a suggestions list
- Record suggestions if there is space
Tivo

• Augment collaborative filtering with a Bayesian content-based system to help with cold start

• Pick recommended shows to record
 – First, high thumbs that got missed because something else was recorded
 – Collaborative filtering
 – Content-based