Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

reward

".'
L“".r—f
" s | Environment

action

state
- a,

Grid World

The agent lives in a grid

Walls block the agent’s path

The agent’s actions do not always
go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= [f there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards™

+1

START

Grid Futures

Deterministic Grid World Stochastic Grid World
X X
E N S
E N S W

Markov Decision Processes

= An MDP is defined by:

A setof statess € S
A set of actionsa € A
A transition function T(s,a,s’)
= Prob that a from s leads to s’
" j.e., P(s’ | s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

= MDPs are a family of non-

deterministic search problems
» Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

+1

1 START

0.8

0.1 0.1

Keepaway

= http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swi/learn360.swf

» SATR
" Sy S

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/swf/learn360.swf
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/swf/learn360.swf

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

P(St—i—l — S’\St = 54, Ay = a, Si—1 = 541, Av—1,...S0 = So)

P(Siy1 =5'|St = s¢, Ar = ay)

Solving MDPs

* In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |[nan MDP, we want an optimal policy t*: S — A
= A policy © gives an action for each state

= An optimal policy maximizes expected utility if followed
» Defines a reflex agent

Optimal policy when 2 1 f -
R(s, a, s’) =-0.03 for all
non-terminals s

1 1 — ® e

10

Example Optimal Policies

—
= S
o 1
1

|
I —_
5 0
~ R

Utilities of Sequences

= |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[T‘, ro, 71,72, - -] ~ [’)", 7"6,7’&, TJQ) .-]
~

[ro,71,72,...]1 = [rg,r7, 75, - -]

= Theorem: only two ways to define stationary utilities
= Additive utility:
U([TO7T1)T2,-.]) =70 +r1+ro+---

= Discounted utility:
U(lrg,r1,72,...]) =ro+yr1 + 727«2 e

Infinite Utilities™!

= Problem: infinite state sequences have infinite rewards

.
Solutions: : |
* Finite horizon: ==
= Terminate episodes after a fixed T steps (e.g. life) | ™ | ™| ™ .

= Gives nonstationary policies (r depends on time left)

= Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “done” for High-Low)
= Discounting: for0 <y <1

U(lrg,---Toc]) = Y ¥'r¢ < Rmax/(1 —)
t=0

= Smaller y means smaller “horizon” — shorter term focus

Discounting

= Typically discount
rewards by y < 1 iy
each time step '

= Sooner rewards
have higher utility

than later rewards TN

= Also helps the -
algorithms -
converge 2 J

Recap: Defining MDPs

= Markov decision processes:
= States S
= Start state s,
= Actions A
* Transitions P(s’[|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

Optimal Utilities

Fundamental operation: compute
the values (optimal expectimax
utilities) of states s

Why? Optimal values define
optimal policies!

Define the value of a state s:
V'(s) = expected utility starting in s
and acting optimally

Define the value of a g-state (s,a):

Q’(s,a) = expected utility starting in s,
taking action a and thereafter

acting optlmally 3 | os12 | o.8es | 0.912 Sl = —

Define the optimal policy: 2 | o2

0.660 E 2 1

7 (s) = optimal action from state s

1 0.705 0.655 0.611 0.388 1 1 —

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

Optimal rewards = maximize over first)
action and then follow optimal policy o

= Formally:
V*(s) = maxQ*(s, a)

QR*(s,a) =) T(s,a,s") [R(s, a,s’) + "YV*(SI)]

V*i(s) = m(?xZT(s, a,s) {R(s, a,s’) + ny*(sl)}

S

Solving MDPs

= We want to find the optimal policy ©*

= Proposal 1: modified expectimax search, starting from
each state s:

m*(s) = argmaxQ*(s,a)

Q*(s,a) = T(s,a,s) [R(S, a,s’) + ’YV*(S’)] o

V*(s) = max Q*(s,a) <

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
» This tree is usually infinite (why?))
» Same states appear over and over (why?) o
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

= Do all planning offline, no replanning
needed!

Value Estimates

= Calculate estimates V, (s)
= Not the optimal value of s!

= The optimal value
considering only next k
time steps (k rewards)

= As k — oo, it approaches
the optimal value

= Almost solution: recursion
(i.e. expectimax)

= Correct solution: dynamic
programming

10

Value lteration

= |dea:
= Start with V,'(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vig1(s) mC?XZT(s,a,, s") {R(s,a, s + fy\/@-(s’)}

S

» This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
» Policy may converge long before values do

11

Example: y=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

31 0 | Op GAED| 3| 0| O |0.72|

Vig1(s) = mC?XZT(s,a, s {R(s,a,s') + ’yVi(s')}

V2((3,3)) = > T((3,3), right, s") [R((3,3)) 4 0.9 V4 (s)]

S
max happens for

a=right, otfer =0.9[08-14+0.1-040.1-0]

actions not shown
12

Example: Value lteration

+1

+1

* [Information propagates outward from terminal
states and eventually all states have correct

value estimates

13

Convergence”

= Define the max-norm: ||U|| = maxs |U(s)|

* Theorem: For any two approximations U and V

Uttt — vt <~ |ut - VY

» |.e. any distinct approximations must get closer to each other, so,
In particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:
|UtTL — U] <€, = JUTL - U|| < 2ev/(1 —7)

» |.e. once the change in our approximation is small, it must also
be close to correct

14

Practice: Computing Actions

= \Which action should we chose from state s:
= Given optimal values V7

arg max Z T(s,a,s)[R(s,a,s) +~V*(s)]

S

= Given optimal g-values Q?

arg maxQ*(s,a)
a

= | esson: actions are easier to select from Q’s!

15

Utilities for Fixed Policies

= Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

= Define the utility of a state s, under a
fixed policy =
V7(s) = expected total discounted

rewards (return) starting in s and
following =

= Recursive relation (one-step look-
ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V()]

17

Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vig1(s) mC?XZT(s,a,, s") {R(s,a, s + fy\/@-(s’)}

S

» This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
» Policy may converge long before values do

Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A| times longer
than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

» Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal
utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-step lookahead
with resulting converged (but not optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!
= Can converge faster under some conditions

Policy lteration

= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates:
= |terate until values converge
V() = 3T (s, mi(s),8') [R(s,m(s), 8) + 4 V()
S,

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tp41(s) = arg gnaXZT(s, a,s) {R(s, a,s) + ’}/V’”k‘(s’)}

S,

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

* Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

Reinforcement Learning

= Reinforcement learning:

= Still assume an MDP:
= Asetofstatess € S
= A set of actions (per state) A
= A model T(s,a,s’)
= A reward function R(s,a,s’)

= Still looking for a policy 7(s)

Demo: Robot Dogs!

= New twist: don’t know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Passive Learning

3| = =
= Simplified task
* You don’t know the transitions T(s,a,s’) a8 =
* You don’t know the rewards R(s,a,s’) N I N -
* You are given a policy n(s) PR p

Goal: learn the state values
what policy evaluation did

= |n this case:
» |earner “along for the ride”
= No choice about what actions to take
» Just execute the policy and learn from experience
= We'll get to the active case soon

= This is NOT offline planning! You actually take actions in the
world and see what happens

Example: Direct Evaluation

o Episodes:

3,3) right -1

3,3) right -1

(1,
(1,
(1,
(1,
(2,
(
@3,
(
(4,3) exit +100
(

1,1) up -1
1,2) up -1
1,3) right -1
2,3) right -1
3,3) right -1
3,2) up -1
4,2) exit -100

done)

(
(
(
(
(
(
(
(

y
3| = | = | = |[+100
2 |} b |[[-100
3 [N [R
1 2 3 4 X
y=1,R=-1

V(2,3) ~ (96 + -103) /2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 =31.3

10

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look-
ahead using current V

» Unfortunately, need T and R

Vo (s) =0

Via(s) « > T(s,m(s), s [R(s,m(s),s") + V" (s)]

11

Model-Based Learning

= |dea:
= | earn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empirical model learning
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
» Discover R(s,a,s’) when we experience (s,a,s’)

= Solving the MDP with the learned model
» |terative policy evaluation, for example »

1(s) > T(s,7(s), s)R(s,7m(s),8") + V] (s)]

12

Example: Model-Based Learning

o Episodes:

(1,1 up
(1,2) up
(1,2) up
(1,3) right -1
3) right -1
3) right -1
2) up -1
3,3) right -1
4,3) exit +100

done)

(2,
(3,
(3,
(
(
(

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1

(

(

4,2) exit -100

done)

+100

-100

T(<3,3>, right, <4,3>) =1/ 3

T(<2,3>, right, <3,3>) =

Model-Free Learning

= \Want to compute an expectation weighted by P(x):
Elf(z)] = >, P(2)f(z)
» Model-based: estimate P(x) from samples, compute expectation

s Elf(x)| =~ P(x)f(z
P —comeye | PU@)= L P@I@

= Model-free: estimate expectation directly from samples

x; ~ P(x) Elf(z)] ~ 5 32, f(xi)

= Why does this work? Because samples appear with the right
frequencies!

14

Sample-Based Policy Evaluation?

Vi1(s) <) T(s,m(s),s)[R(s,m(s),s")

* Who needs T and R? Approximate the
expectation with samples (drawn from T!)

sample; = R(s,mw(s),s7) + V" (s}

sampley = R(s,7(s), sb) + 7V (sh)
sample, = R(s,w(s), sﬁc) - ny,L-']T(S;C)

Almost! But we only
actually make progress
when we move to i+1.

1
Viiq1(s) « - Z sample;
)

15

Temporal-Difference Learning

= Big idea: learn from every experience!

= Update V(s) each time we experience (s,a,s’,r) S
= Likely s’ will contribute updates more often n(s)
S, T(S)
= Temporal difference learning
= Policy still fixed! Ao
= Move values toward value of whatever °
successor occurs: running average!
/ /
Sample of V(s): sample = R(s,m(s),s") + W/VW(S)
Update to V(s): VT(s) «— (1 —a)V"™(s) 4+ (a)sample

Same update: VT(s) «— V™ (s) + a(sample — V" (s))

16

Exponential Moving Average

= Exponential moving average
= Makes recent samples more important

Tp+(1—a) Tp 1 +(1—a)? zp_o+...
I1+(1-a)+(1—-a)2+...

:Eﬂ, —

» Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tp = (1 _Qf) *Tp—1 T Q- Ty

= Decreasing learning rate can give converging averages

17

Example: TD Policy Evaluation

VT(s) — (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

(1,1) up - (1,1) up -1 3 [G
(1,2) up - (1,2) up -1 2| 4 b |
(1,2) up - (1,3) right -1 N (R N [P S
(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 3

(3,3) right -1 (3,2) up -1

(3,2) up -1 (4,2) exit -100 5

(3,3) right -1 (done)

(4,3) exit +100 1

(done)

Takey=1,a=0.5

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation

However, if we want to turn values into »~
a (new) policy, we're sunk:

w(s) = argmaxQ*(s,a)

Q" (s,a) => T(s,a, s [R(s, a,s') + *)/V*(s’)}

ldea: learn Q-values directly
Makes action selection model-free too!

19

Active Learning

3| ——| -
= Full reinforcement learning
* You don’t know the transitions T(s,a,s’) i =
* You don’t know the rewards R(s,a,s’) N I N -
*= You can choose any actions you like — p

Goal: learn the optimal policy
what value iteration did!

= |n this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens

Q-Learning

= Q-Learning: sample-based Q-value iteration

» | earn Q*(s,a) values
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
» Consider your new sample estimate:

Q"(s,0) = ¥ T(s,0,5) | R(s,a,5) +y max Q*(s',a")

sample = R(s,a,s’) + max Q(s',a")
a

» |[ncorporate the new estimate into a running average:

@a) — (1-a)Q(s,a) + (o) [sam@

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
= |f you explore enough
* |f you make the learning rate small enough
- but not decrease it too quickly!
= Basically doesn’t matter how you select actions (!)

= Neat property: off-policy learning
» |learn optimal policy without following it (some caveats)

S iE S E

Exploration / Exploitation

= Several schemes for forcing exploration
= SimplestcTandom actions (e greedy)>

= Every time step, flip a coin
= With probability ¢, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Exploration Functions

= \When to explore
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) = u + k/n (exact form not important)

Qi+1(s,a) «a R(s,a,5) + max Q;(s',a")

Qi+1(s,a) «—a R(s,a,s) +~ max f(Qi(s',a"),N(s',a"))

Q-Learning

The Story So Far: MDPs and RL

Things we know how to do:

If we know the MDP

= Compute V*, Q*, n* exactly
= Evaluate a fixed policy &

If we don’t know the MDP

We can estimate the MDP then solve

We can estimate V for a fixed policy &
We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

Techniques:

= Model-based DPs

Value and policy
lteratio

Policy evaluatio

Model-based RL

= Model-free RL:

= Value learning

*(Qleaming

	Slide Number 1
	Slide Number 2
	Reinforcement Learning
	Grid World
	Grid Futures
	Markov Decision Processes
	Keepaway
	What is Markov about MDPs?
	Solving MDPs
	Example Optimal Policies

