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Outline

* Bayesian networks
— Network structure
— Conditional probability tables
— Conditional independence

* Inference in Bayesian networks
— Exact inference

— Approximate inference



Bayesian Beliet Networks (BNs)

e Definition: BN = (DAG, CPD)
— DAG: directed acyclic graph (BN’ s structure)
* Nodes: random variables (typically binary or discrete, but
methods also exist to handle continuous variables)
 Arcs: indicate probabilistic dependencies between nodes

(lack of link signifies conditional independence)
— CPD: conditional probability distribution (BN’ s parameters)
« Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT)

P(x; |x;) whereu; 1s the set of all parent nodes of x;

— Root nodes are a special case — no parents, so just use priors

in CPD:
7, =0,50 P(x; |m;) = P(x;)



Example BN

P(A) = 0.001

B P(C|A)=0.2
IE(BIA) =03 / \‘ P(CI—-A) =0.005
(B|-=A) =0.001 \ /\

P(D|B,C) =0.1 P P(E|C)=0.4

(D|B,-C) =0.01 P(E|-C) = 0.002
P(D|-B,C)=0.01 P

(D|-B,-C) = 0.00001

Note that we only specify P(A) etc., not P(—A), since they have to add to one



Conditional independence and
chaining

« Conditional independence assumption

- P(x,|7,.q) = P(x, |m,) M
where ¢ 1s any set of variables \/ q
(nodes) other than X;and its successors po

— JT; blocks influence of other nodes on X, /'\
and 1ts successors (q influences X, only
through variables in JT;)

— With this assumption, the complete joint probability distribution of all

variables in the network can be represented by (recovered from) local
CPDs by chaining these CPDs:

P(xl,...,xn) = H:.’=1P(x,. |‘71"i)



Chaining: Example

RN
\/\

Computing the joint probability for all variables is easy:

P(a b,c,d,e)
= P(e|a,b,c d)P(a,b,c,d) by the product rule
= P(e|c)P(a, b, c,d) by cond. indep. assumption
= P(e|c)P(d|a, b, c)P(a, b, c)
= P(e|c)P(d|Db,c)P(c|a,b)P(a, b)
= P(e|c)P(d|b,c)P(c|a)P(b|a)P(a)




Topological semantics

e A node 1s conditionally independent of its non-
descendants given its parents

* A node 1s conditionally independent of all other nodes 1n
the network given its parents, children, and children’ s
parents (also known as 1ts Markov blanket)

e The method called d-separation can be applied to decide
whether a set of nodes X 1s independent of another set Y,
given a third set Z



Inference tasks

« Simple queries: Computer posterior marginal P(X. | E=e¢)
— E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

* Conjunctive queries:
— P(X,, X; | E=e) = P(X; | e=¢) P(X; | X;, E=¢)

« Optimal decisions: Decision networks include utility
information; probabilistic inference 1s required to find P
(outcome | action, evidence)

* Value of information: Which evidence should we seek next?

 Sensitivity analysis: Which probability values are most
critical?

« Explanation: Why do I need a new starter motor?



Approaches to inference

« Exact inference
— Enumeration
— Belief propagation in polytrees
— Variable elimination

— Clustering / join tree algorithms

« Approximate inference
— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods
— Genetic algorithms
— Neural networks
— Simulated annealing
— Mean field theory



Direct inference with BNs

* Instead of computing the joint, suppose we just want the
probability for one variable

« Exact methods of computation:

— Enumeration
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Inference by enumeration

e Add all of the terms (atomic event probabilities) from the
full joint distribution

 If E are the evidence (observed) variables and Y are the
other (unobserved) variables, then:

P(Xle)=aP(X, E)=0a) P(X, E,Y)
« Each P(X, E, Y) term can be computed using the chain rule

« Computationally expensive!
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Example: Enumeration

RN
\/\

* P(x) =Z  P(x; [ m)) P(ni)
* Suppose we want P(D=true), and only the value of E 1s
given as true
* P(dle)=a X2,5-P(a, b, c, d, e)
= a 2 ,gcP(a) P(bla) P(cla) P(d|b,c) P(e|c)
« With simple iteration to compute this expression, there’ s

going to be a lot of repetition (e.g., P(e[c) has to be
recomputed every time we iterate over C=true)
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Exercise: Enumeration

p(smart)=.8 p(study)=.6

p(fair)=.9

e,
"
L
LN
"~
......
"
"
"
LN
LN

-p(prep|...) | smart | -smart
study 9 7
“““““ v -~ study 5 N
............... smart —smart
pipassl-- prep | ~prep |prep |-prep Query: What is the

probability that a student
studied, given that they pass

~fair 1 1 1 1 the exam?
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Summary

* Bayes nets
— Structure
— Parameters
— Conditional independence
— Chaining
BN inference
— Enumeration
— Variable elimination

— Sampling methods
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