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Bayesian Networks 

Artificial Intelligence 

Adapted from slides by 
Tim Finin and 
Marie desJardins. 

 

Some material borrowed 
from Lise Getoor. 
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Outline 

•  Bayesian networks 
–  Network structure 
–  Conditional probability tables 
–  Conditional independence 

•  Inference in Bayesian networks 
–  Exact inference 
–  Approximate inference 
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Bayesian Belief Networks (BNs) 

• Definition: BN = (DAG, CPD)  
– DAG: directed acyclic graph (BN’s structure) 

•  Nodes: random variables (typically binary or discrete, but 
methods also exist to handle continuous variables) 

•  Arcs: indicate probabilistic dependencies between nodes 
(lack of link signifies conditional independence) 

– CPD: conditional probability distribution (BN’s parameters) 
•  Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT) 

– Root nodes are a special case – no parents, so just use priors 
in CPD: 
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Example BN 

a 

b                    c 

d                 e  

P(C|A) = 0.2       
P(C|¬A) = 0.005 P(B|A) = 0.3       

P(B|¬A) = 0.001 

P(A) = 0.001 

P(D|B,C) = 0.1       P
(D|B,¬C) = 0.01 
P(D|¬B,C) = 0.01     P
(D|¬B,¬C) = 0.00001 

P(E|C) = 0.4       
P(E|¬C) = 0.002 

Note that we only specify P(A) etc., not P(¬A), since they have to add to one 
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•  Conditional independence assumption 
–        

 where q is any set of variables  
 (nodes) other than       and its successors 

–        blocks influence of other nodes on      
 and its successors (q influences       only 
 through variables in      ) 

–  With this assumption, the complete  joint probability distribution of all 
variables in the network can be represented by (recovered from) local 
CPDs by chaining these CPDs: 
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Conditional independence and 
chaining 
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Chaining: Example 

Computing the joint probability for all variables is easy: 

P(a, b, c, d, e)  
 =  P(e | a, b, c, d) P(a, b, c, d)  by the product rule 
 =  P(e | c) P(a, b, c, d)   by cond. indep. assumption 
 =  P(e | c) P(d | a, b, c) P(a, b, c)  
 =  P(e | c) P(d | b, c) P(c | a, b) P(a, b) 
 =  P(e | c) P(d | b, c) P(c | a) P(b | a) P(a) 

a 

b                    c 

d                 e  
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Topological semantics 

•  A node is conditionally independent of its non-
descendants given its parents 

•  A node is conditionally independent of all other nodes in 
the network given its parents, children, and children’s 
parents (also known as its Markov blanket) 

•  The method called d-separation can be applied to decide 
whether a set of nodes X is independent of another set Y, 
given a third set Z 
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Inference tasks 
•  Simple queries: Computer posterior marginal P(Xi | E=e) 

–  E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false) 

•  Conjunctive queries:  
–  P(Xi, Xj | E=e) = P(Xi | e=e) P(Xj | Xi, E=e) 

•  Optimal decisions: Decision networks include utility 
information; probabilistic inference is required to find P
(outcome | action, evidence) 

•  Value of information: Which evidence should we seek next? 
•  Sensitivity analysis: Which probability values are most 

critical? 
•  Explanation: Why do I need a new starter motor? 
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Approaches to inference 

•  Exact inference  
–  Enumeration 
–  Belief propagation in polytrees 
–  Variable elimination 
–  Clustering / join tree algorithms 

•  Approximate inference 
–  Stochastic simulation / sampling methods 
–  Markov chain Monte Carlo methods 
–  Genetic algorithms 
–  Neural networks 
–  Simulated annealing 
–  Mean field theory 
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Direct inference with BNs 

•  Instead of computing the joint, suppose we just want the 
probability for one variable 

•  Exact methods of computation: 
–  Enumeration 
–  Variable elimination 

•  Join trees: get the probabilities associated with every query 
variable 
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Inference by enumeration 

•  Add all of the terms (atomic event probabilities) from the 
full joint distribution 

•  If E are the evidence (observed) variables and Y are the 
other (unobserved) variables, then: 

P(X|e) = α P(X, E) = α ∑ P(X, E, Y) 
•  Each P(X, E, Y) term can be computed using the chain rule 
•  Computationally expensive! 
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Example: Enumeration 

•  P(xi) = Σ πi P(xi | πi) P(πi) 
•  Suppose we want P(D=true), and only the value of E is 

given as true 
•  P (d|e) = α ΣABCP(a, b, c, d, e) 

      = α ΣABCP(a) P(b|a) P(c|a) P(d|b,c) P(e|c) 
•  With simple iteration to compute this expression, there’s 

going to be a lot of repetition (e.g., P(e|c) has to be 
recomputed every time we iterate over C=true) 

a 

b                    c 

d                 e  
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Exercise: Enumeration 

smart study 

prepared fair 

pass 

p(smart)=.8 p(study)=.6 

p(fair)=.9 

p(prep|…) smart ¬smart 

study .9 .7 

¬study .5 .1 

p(pass|…) 
smart ¬smart 

prep ¬prep prep ¬prep 

fair .9 .7 .7 .2 

¬fair .1 .1 .1 .1 

Query: What is the 
probability that a student 
studied, given that they pass 
the exam? 
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Summary 

• Bayes nets 
– Structure 
– Parameters 
– Conditional independence 
– Chaining 

• BN inference 
– Enumeration 
– Variable elimination 
– Sampling methods 


