
Adversarial Search
(Game Playing)

Chapter 5

Artificial Intelligence

Adapted from materials by Tim Finin,
Marie desJardins, and Charles R. Dyer

Outline

• Game playing
– State of the art and resources
– Framework

• Game trees
– Minimax
– Alpha-beta pruning
– Adding randomness

State of the art

•  How good are computer game players?
–  Chess:

•  Deep Blue beat Gary Kasparov in 1997
•  Garry Kasparav vs. Deep Junior (Feb 2003): tie!
•  Kasparov vs. X3D Fritz (November 2003): tie!

–  Checkers: Chinook (an AI program with a very large endgame database)
is the world champion. Checkers has been solved exactly – it’s a draw!

–  Go: Computer players are decent, at best
–  Bridge: “Expert” computer players exist (but no world champions yet!)

•  Good place to learn more: http://www.cs.ualberta.ca/~games/

Chinook
•  Chinook is the World Man-Machine Checkers

Champion, developed by researchers at the University
of Alberta.

•  It earned this title by competing in human tournaments,
winning the right to play for the (human) world
championship, and eventually defeating the best players
in the world.

•  Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

•  The developers have fully analyzed the game of
checkers and have the complete game tree for it.
–  Perfect play on both sides results in a tie.

•  “One Jump Ahead: Challenging Human Supremacy in
Checkers” Jonathan Schaeffer, University of Alberta
(496 pages, Springer. $34.95, 1998).

Ratings of human and computer chess champions

Typical case
• 2-person game
• Players alternate moves
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to

complete information about the state of the game.
No information is hidden from either player.

• No chance (e.g., using dice) involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello
• Not: Bridge, Solitaire, Backgammon, ...

How to play a game
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute the new position resulting from each move
– Evaluate each resulting position and determine which is

best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board”
– Generating all legal next boards
– Evaluating a position

Evaluation function
•  Evaluation function or static evaluator is used to evaluate

the “goodness” of a game position.
–  Contrast with heuristic search where the evaluation function was a

non-negative estimate of the cost from the start node to a goal and
passing through the given node

•  The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.
–  f(n) >> 0: position n good for me and bad for you
–  f(n) << 0: position n bad for me and good for you
–  f(n) near 0: position n is a neutral position
–  f(n) = +infinity: win for me
–  f(n) = -infinity: win for you

Evaluation function examples
•  Example of an evaluation function for Tic-Tac-Toe:

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length is a complete row, column, or diagonal

•  Alan Turing’s function for chess
–  f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s

pieces and b(n) = sum of black’s

•  Most evaluation functions are specified as a weighted sum of
position features:
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

•  Example features for chess are piece count, piece placement,
squares controlled, etc.

•  Deep Blue had over 8000 features in its evaluation function

Game trees

•  Problem spaces for typical games are
represented as trees

•  Root node represents the current
board configuration; player must decide
the best single move to make next

•  Static evaluator function rates a board
position. f(board) = real number with
f>0 “white” (me), f<0 for black (you)

•  Arcs represent the possible legal moves for a player
•  If it is my turn to move, then the root is labeled a "MAX" node;

otherwise it is labeled a "MIN" node, indicating my opponent's turn.
•  Each level of the tree has nodes that are all MAX or all MIN; nodes at

level i are of the opposite kind from those at level i+1

Minimax procedure
•  Create start node as a MAX node with current board

configuration
•  Expand nodes down to some depth (a.k.a. ply) of

lookahead in the game
•  Apply the evaluation function at each of the leaf nodes
•  “Back up” values for each of the non-leaf nodes until a

value is computed for the root node
–  At MIN nodes, the backed-up value is the minimum of the values

associated with its children.
–  At MAX nodes, the backed-up value is the maximum of the values

associated with its children.

•  Pick the operator associated with the child node whose
backed-up value determined the value at the root

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2 This is the move
selected by minimax Static evaluator

value

Partial Game Tree for Tic-Tac-Toe

•  f(n) = +1 if the position is a
win for X.

•  f(n) = -1 if the position is a
win for O.

•  f(n) = 0 if the position is a
draw.

Minimax Tree
MAX node

MIN node

f value
value computed

by minimax

Alpha-beta pruning

•  We can improve on the performance of the minimax
algorithm through alpha-beta pruning

•  Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is.” -- Pat Winston

2 7 1

=2

>=2

<=1

?

•  We don’t need to compute
the value at this node.

•  No matter what it is, it can’t
affect the value of the root
node.

MAX

MAX

MIN

Alpha-beta pruning

•  Traverse the search tree in depth-first order
•  At each MAX node n, alpha(n) = maximum value found so

far
•  At each MIN node n, beta(n) = minimum value found so far

–  Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

•  Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’t generate or examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n.

•  Alpha cutoff: stop searching below MIN node n if beta(n) <=
alpha(i) for some MAX node ancestor i of n.

Alpha-beta example

3 12 8 2 14 1

3 MIN

MAX 3

2 - prune 14 1 - prune

Alpha-beta algorithm
function MAX-VALUE (state, α, β)
 ;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return UTILITY(state)
v := -∞
for each s in SUCCESSORS (state) do
 v := MAX (v, MIN-VALUE (s, α, β))
 if v >= β then return v
 α := MAX (α, v)
end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return UTILITY(state)
v := ∞
for each s in SUCCESSORS (state) do
 v := MIN (v, MAX-VALUE (s, α, β))
 if v <= α then return v
 β := MIN (β, v)
end
return v

Effectiveness of alpha-beta
•  Alpha-beta is guaranteed to compute the same value for the

root node as computed by minimax, with less or equal
computation

•  Worst case: no pruning, examining bd leaf nodes, where
each node has b children and a d-ply search is performed

•  Best case: examine only (2b)d/2 leaf nodes.
– Result is you can search twice as deep as minimax!

•  Best case is when each player’s best move is the first
alternative generated

•  In Deep Blue, they found empirically that alpha-beta
pruning meant that the average branching factor at each
node was about 6 instead of about 35!

Games of chance
•  Backgammon is a two-player
game with uncertainty.

• Players roll dice to determine
what moves to make.

• White has just rolled 5 and 6
and has four legal moves:

•  5-10, 5-11
• 5-11, 19-24
• 5-10, 10-16
• 5-11, 11-16

• Such games are good for
exploring decision making in
adversarial problems involving
skill and luck.

Game trees with chance nodes
• Chance nodes (shown as circles)
represent random events

• For a random event with N
outcomes, each chance node has
N distinct children; a probability
is associated with each

• (For 2 dice, there are 21 distinct
outcomes)

• Use minimax to compute values
for MAX and MIN nodes

• Use expected values for chance
nodes

• For chance nodes over a max node,
as in C:

expectimax(C) = ∑i(P(di) * maxvalue(i))

• For chance nodes over a min node:
expectimin(C) = ∑i(P(di) * minvalue(i))

Max
Rolls

Min
Rolls

Meaning of the evaluation function

•  Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

•  Note that a “relative-order preserving” change of the values would not change
the decision of minimax, but could change the decision with chance nodes.

•  Linear transformations are OK

A1 is best
move

A2 is best
move

2 outcomes
with prob {.
9, .1}

