
Informed
Search

Chapter 4

Adapted from materials by Tim Finin,
Marie desJardins, and Charles R. Dyer

Artificial Intelligence

Outline
•  Heuristic search
•  Best-first search

–  Greedy search
–  Beam search
–  A, A*
–  Examples

•  Memory-conserving variations of A*
•  Heuristic functions
•  Iterative improvement methods

–  Hill climbing
–  Simulated annealing
–  Local beam search
–  Genetic algorithms

•  Online search

Heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover.]
involving or serving as an aid to learning, discovery, or problem-
solving by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or educated

guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (computer science) relating to or using a heuristic rule 2:

of or relating to a general formulation that serves to guide investigation
[ant: algorithmic] n : a commonsense rule (or set of rules) intended to
increase the probability of solving some problem [syn: heuristic rule,
heuristic program]

Informed methods add
domain-specific information

• Add domain-specific information to select the best
path along which to continue searching

• Define a heuristic function h(n) that estimates the
“goodness” of a node n.
– Specifically, h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.

• The heuristic function is an estimate of how close
we are to a goal, based on domain-specific
information that is computable from the current
state description.

Heuristics
•  All domain knowledge used in the search is encoded in the

heuristic function h().
•  Heuristic search is an example of a “weak method” because

of the limited way that domain-specific information is used to
solve the problem.

•  Examples:
–  Missionaries and Cannibals: Number of people on starting river bank
–  8-puzzle: Number of tiles out of place
–  8-puzzle: Sum of distances each tile is from its goal position

•  In general:
–  h(n) ≥ 0 for all nodes n
–  h(n) = 0 implies that n is a goal node
–  h(n) = ∞ implies that n is a dead-end that can never lead to a goal

Weak vs. strong methods
•  We use the term weak methods to refer to methods that are

extremely general and not tailored to a specific situation.
•  Examples of weak methods include

–  Means-ends analysis is a strategy in which we try to represent the
current situation and where we want to end up and then look for
ways to shrink the differences between the two.

–  Space splitting is a strategy in which we try to list the possible
solutions to a problem and then try to rule out classes of these
possibilities.

–  Subgoaling means to split a large problem into several smaller ones
that can be solved one at a time.

•  Called “weak” methods because they do not take advantage
of more powerful domain-specific heuristics

Best-first search

• Order nodes on the nodes list by increasing
value of an evaluation function f (n)
–  f (n) incorporates domain-specific information in

some way.

• This is a generic way of referring to the class
of informed methods.
– We get different searches depending on the

evaluation function f (n)

Greedy search
•  Use as an evaluation function f (n) = h(n),

sorting nodes by increasing values of f.
•  Selects node to expand believed to be

closest (hence “greedy”) to a goal node
(i.e., select node with smallest f value)

•  Not complete
•  Not admissible, as in the example.

–  Assuming all arc costs are 1, then greedy search will
find goal g, which has a solution cost of 5.

–  However, the optimal solution is the path to goal I
with cost 3.

a

g b

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Beam search

•  Use an evaluation function f (n) = h(n), but the maximum
size of the nodes list is k, a fixed constant

•  Only keeps k best nodes as candidates for expansion, and
throws the rest away

•  More space efficient than greedy search, but may throw
away a node that is on a solution path

•  Not complete
•  Not admissible

Algorithm A
•  Use as an evaluation function

f (n) = g(n) + h(n)

•  g(n) = minimal-cost path from the start
state to state n.

•  The g(n) term adds a “breadth-first”
component to the evaluation function.

•  Ranks nodes on search frontier by
estimated cost of solution from start
node through the given node to goal.

•  Not complete if h(n) can equal infinity.
•  Not admissible.

S

B A

D
G

1 5 8

3

1

5

C

1

9

4

5 8
9

g(d)=4
h(d)=9

C is chosen
next to expand

Algorithm A
1. Put the start node S on the nodes list, called OPEN
2. If OPEN is empty, exit with failure
3. Select node in OPEN with minimal f (n) and place on CLOSED
4. If n is a goal node, collect path back to start and stop.
5. Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1. If n' is not already on OPEN or CLOSED

•  put n' on OPEN
•  compute h(n'), g(n') = g(n) + c(n,n'), f (n') = g(n') + h(n')

2. If n' is already on OPEN or CLOSED and if g(n') is lower for
the new version of n', then:
•  Redirect pointers backward from n' along path yielding lower g(n').
•  Put n' on OPEN.

Algorithm A*

• Algorithm A with constraint that h(n) ≤ h*(n)
– h*(n) = true cost of the minimal cost path from n to a goal.

• Therefore, h(n) is an underestimate of the distance to
the goal.

• h() is admissible when h(n) ≤ h*(n) holds.
• Using an admissible heuristic guarantees that the first

solution found will be an optimal one.
• A* is complete whenever the branching factor is

finite, and every operator has a fixed positive cost
• A* is admissible

Some observations on A
•  Perfect heuristic: If h(n) = h*(n) for all n, then only the

nodes on the optimal solution path will be expanded. So, no
extra work will be performed.

•  Null heuristic: If h(n) = 0 for all n, then this is an
admissible heuristic and A* acts like Uniform-Cost Search.

•  Better heuristic: If h1(n) < h2(n) ≤ h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1
–  If A1* uses h1, and A2* uses h2, then every node expanded by A2* is

also expanded by A1*.
–  In other words, A1 expands at least as many nodes as A2*.
–  We say that A2* is better informed than A1*.

•  The closer h is to h*, the fewer extra nodes that will be
expanded

Example search space

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

8 5

g value

In-class Example
n g(n) h(n) f (n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

•  h*(n) is the (hypothetical) perfect heuristic.
•  Since h(n) ≤ h*(n) for all n, h is admissible
•  Optimal path = S B G with cost 9.

Greedy search
f (n) = h(n) !

node expanded nodes list!
 { S(8) }!
 S { C(3) B(4) A(8) }!
 C { G(0) B(4) A(8) }!
 G { B(4) A(8) }

•  Solution path found is S C G, 3 nodes expanded.
•  Wow, that is a fast search!! But it is NOT optimal.

A* search
f (n) = g(n) + h(n)
!

node exp. nodes list!
 { S(8) }!
 S { A(9) B(9) C(11) }!
 A { B(9) G(10) C(11) D(inf) E(inf) }!
 B { G(9) G(10) C(11) D(inf) E(inf) } !
 G { C(11) D(inf) E(inf) }!

•  Solution path found is S B G, 4 nodes expanded..
•  Still pretty fast. And optimal, too.

Proof of the optimality of A*

•  We assume that A* has selected G2, a goal state with a
suboptimal solution (g(G2) > f*).

•  We show that this is impossible.
– Choose a node n on the optimal path to G.
– Because h(n) is admissible, f(n) ≤ f *.
–  If we choose G2 instead of n for expansion, f(G2) ≤ f(n).
– This implies f(G2) ≤ f *.
– G2 is a goal state: h(G2) = 0, f(G2) = g(G2).
– Therefore g(G2) ≤ f*
– Contradiction.

Dealing with hard problems

• For large problems, A* often requires too much space.
• Two variations conserve memory: IDA* and SMA*
•  IDA* -- iterative deepening A*

– uses successive iteration with growing limits on f. For
example,
•  A* but don’t consider any node n where f (n) > 10
•  A* but don’t consider any node n where f (n) > 20
•  A* but don’t consider any node n where f (n) > 30, ...

• SMA* -- Simplified Memory-Bounded A*
– uses a queue of restricted size to limit memory use.
–  throws away the “oldest” worst solution.

What’s a good heuristic?

•  If h1(n) < h2(n) ≤ h*(n) for all n, h2 is better than
(dominates) h1.

•  Relaxing the problem: remove constraints to create a
(much) easier problem; use the solution cost for this
problem as the heuristic function

•  Combining heuristics: take the max of several admissible
heuristics: still have an admissible heuristic, and it’s better!

•  Use statistical estimates to compute h: may lose
admissibility

•  Identify good features, then use a learning algorithm to
find a heuristic function: also may lose admissibility

In-class Exercise: Creating Heuristics

8-Puzzle

N-Queens

Missionaries and
Cannibals

Remove 5
Sticks

Water Jug Problem

5 2

Route Planning

