

Spelling Checking Algorithms

Doug Blank
Spring 2012

Algorithms: Design and Practice

The Red Wavy Line

Is it a “word”?
● Break string up into “words”
● Look up each word in a dictionary
● If found, then a word
● Else, not a word

Not So Simple
● Would the dictionary store all variations of a

word?
● stump, stumped, stumping, stumps

● Some words are only correct if they have proper
capitalization
● Washington vs. washington

● Some “words” have spaces in them
● au pair, et cetera, etc.

Spelling Suggestions: How?

Hot Topic!
● Levenshtein, self-correcting codes, 1966
● Wagner and Fischer, string-to-string correction

problem, 1974
● Boyer-Moore, fast string matching, 1977
● Knuth, fast pattern matching, 1977
● Sellers, evolutionary distances, 1980
● Ukkonnen, approximate string matching, 1985
● Zobel and Dart, approximate string matches in a

large lexicon, 1995

Distance
● A distance between two “strings” can be

computed that gives a measurement of the
number of steps needed to turn one string into
the other
● distance(“apple”, “appl”) => 1 (deletion)
● distance(“apple”, “bapple”) => 1 (insertion)
● distance(“apple”, “bpple”) => 1 (substitution)
● distance(“receive”, “recieve”) => 2

● Commutative, Transitive

Levenshtein Distance #1

def distance(s1, s2):
 if len(s1) == 0: return len(s2)
 if len(s2) == 0: return len(s1)
 if s1[0] == s2[0]:
 return distance(s1[1:], s2[1:]) + 0
 else:
 return min(distance(s1[1:], s2[1:]) + 1,
 distance(s1, s2[1:]) + 1,
 distance(s1[1:], s2) + 1)

Levenshtein Distance #2

def distance(s1, s2):
 if len(s1) == 0: return len(s2)
 if len(s2) == 0: return len(s1)
 cost = 0 if (s1[0] == s2[0]) else 1
 return min(distance(s1[1:], s2[1:]) + cost,
 distance(s1, s2[1:]) + 1,
 distance(s1[1:], s2) + 1)

Problem!
● Recursive?
● Doesn't save previously computed answers

“Dynamic Programming”
● Saving previously computed “subproblems”
● Typically using iteration, array

Levenshtein Distance
int LevenshteinDistance(char s[1..m], char t[1..n])
{
 for i from 0 to m
 d[i, 0] := i // the distance of any first string to an empty second string
 for j from 0 to n
 d[0, j] := j // the distance of any second string to an empty first string
 for j from 1 to n
 {
 for i from 1 to m
 {
 if s[i] = t[j] then
 d[i, j] := d[i-1, j-1] // no operation required
 else
 d[i, j] := minimum
 (
 d[i-1, j] + 1, // a deletion
 d[i, j-1] + 1, // an insertion
 d[i-1, j-1] + 1 // a substitution
)
 }
 }
 return d[m,n]
}

Memoize
● Save the result of a computation based on the

arguments given
● Results are “cached” and used later

Memoize

def func(param1, param2):
have I computed this before?
if so, recall results, and return them
else, compute, save, and return them

Python Function Decorators
● Uses the syntax “@fname” on line before

function
● fname is a function which takes a function as an

argument, and returns a function

Function Decorators

def dec(f):
 print(“Here!”)
 return f

@dec
def func(a, b):
 return a + b

Here!
>>> func(1, 2)
3

Function Decorators
def dec(f):
 def m(*args):
 print(“Here!”)
 return f(*args)
 return m

@dec
def func(a, b):
 return a + b

>>> func(1, 2)
Here!
3

Memoized Levenshtein Distance
def memoize(f):
 cache = {}
 def m(*args):
 if args not in cache:
 cache[args] = f(*args)
 return cache[args]
 return m

@memoize
def distance(s1, s2):
 if len(s1) == 0: return len(s2)
 if len(s2) == 0: return len(s1)
 cost = 0 if (s1[0] == s2[0]) else 1
 return min(distance(s1[1:], s2[1:]) + cost,
 distance(s1, s2[1:]) + 1,
 distance(s1[1:], s2) + 1)

Problem?
● The iterative, array-based method is basically

equivalent to the recursive, memoized version
● However!

● Many languages have a limited recursive call stack

Lesson
● Try to separate the big idea from any

implementational details
● The big idea is the algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

