CS312

OpenGL
Lights and Materials

[Light and Matter

From a physical perspective, a surface
can either
o emit light by self-emission (as a light bulb)

o reflect light from other sources that illuminate
it.

I NI

/*\

1/

_— A

Interaction Between Light and
[Surfaces

(a) specular
(b) diffuse
(c) translucent

¥

(a) (b) (c)

[Light Sources

Light can leave a surface through
o self-emission and reflection.

What specifies a light source
o position
o direction
o Intensity

[Color Sources

Not only do light sources emit different
amounts of light at different
frequencies, but also their directional
properties vary with frequency.

Our visual system is based upon three
primaries

o For most applications, it is sufficient to
reduce each light to a 3-component
frequency:

[=al +pl,+gl,

[Ambient Lights

Lights that are designed and positioned to
provide uniform illumination throughout the
room (kitchens, classrooms).

Achieved with light sources that have
diffusers whose purpose is to scatter light in
all directions.

o Florescent lights have covers designed to do this.

To the lit surface, ambient light has no
apparent direction.

[Point Sources (Diffuse)

An ideal point source emits light equally in all
directions.

To the lit surface, diffuse light is directional.

The intensity of illumination proportional to
the distance, and also depends on the angle

of impact. \"’0/'

N

[Spotlights

Spotlights are characterized by a

narrow range of angles through which

light Is emitted.

o A spotlight can be constructed from a
point source by limiting the angles

P,

[Distant Light Sources

If the light source is far from the
surface, the direction of light is uniform
across the entire surface (the sun).

[Parallel Light Rays

Equivalent to a source that illuminates
objects with parallel rays of light.

Graphics systems can carry out
rendering calculations more efficiently
for distant light sources than for near

ones.
o OpenGL allows both

[Material Properties

Three different reflections
o ambient

o diffuse

o specular

[Ambient Reflection

The intensity of ambient light is the
same at every point on the surface.

o Some light is absorbed and some is
reflected.

o A surface has of course, three ambient
coefficients and they can be different.

o Hence, a sphere appears yellow under
white ambient light if its blue ambient
coefficient is small and its red and green
coefficients are large.

[Diffuse Reflection

= A perfectly diffuse reflector scatters the light
that it reflects equally in all directions.

= Perfectly diffuse surfaces are so rough that
there is no preferred angle of reflection

|

[Specular Reflection

= Only ambient and diffuse reflections
result in shaded but dull, somewhat

chalk-like surfaces.
= The highlights

[Normal Vectors

The surface normal gives the
orientation.

Given 3 noncollinear points, normal is

o n=(p2-p0) x (p1-p0)
o Be careful about the order of the vectors.

Reversing the order changes the surface
from outward pointing to inward pointing.

GL Normals

Associate a normal with a vertex through functions
such as

0 glNormal3f (nx, ny, nz);

O glNormal3fv(ptr to array);

o Normals are modal: if we define a normal before a
sequence of vertices, this normal is associated with all the
vertices

Set the normal to have unit length so cosine
calculations are correct

o Length can be affected by transformations

o glEnable (GL NORMALIZE) allows for
autonormalization at a performance penalty

Polygonal Shading

Consider the polygon mesh shown here.
We will consider three ways to shade
the polygons: flat, interpolative or
Gourand, and Phong shading

[Flat Shading]

= For a flat polygon, the normal is
constant

= The shading calculations only need to
be carried out once for each polygon.

0 glShadeModel (GL FLAT) ;

Interpolative and Gourand
[Shading

The normals are computed at each
vertex. Colors and intensities of interior
points are interpolated between
vertices.

0 glShadeModel (GL SMOOTH) ;

[Phong Shading

Instead of interpolating the intensities,
interpolate the normals s
Then do calculation of intensities
using the interpolated normal
(typically at scan conversion)

Interpolating normals is much more expensive
than interpolating colors in Gourand Shading

Phong shading (e.g., per pixel shading) can be
implemented using shaders in OpenGL

Usually done off-line (not supported in OpenGL)

[Light Sources in OpenGL

OpenGL supports the four types of light
sources that we just described, and allows
at least 8 light sources per program.

Each light source must be individually
specified and enabled.

0 glLightfv (source, parameter,
pointer to array);

0 glLightf (source, parameter, wvalue);

Light Parameters

The position (or direction) of the light, the amount of
ambient, diffuse, and specular light associated with
a source.

GL float diffuseO[]={1.0, 0.0, 0.0, 1.0};

glLightfv (GL LIGHTO, GL POSITION, lightO pos) ;
glLightfv(GL_LIGHTO, GL AMBIENT, ambientO) ;
glLightfv (GL LIGHTO, GL DIFFUSE, diffuse0);
glLightfv (GL_LIGHTO, GL SPECULAR, specular0);
glEnable (GL_ LIGHTING) ;

glEnable (GL_LIGHTO) ;

Note that we must enable both lighting and all the
particular source lights.

[Direction and Position

When specifying a light position, a light
may either be directional (rays

parallel), or positional.

float 1lightO0 pos[] = {1.0,1.0,1.0,0.0};
glLightfv (GL LIGHTO, GL POSITION, lightO pos) ;

If the 4t value is 0 then the light is
directional. Otherwise it is positional.

[Other Lighting Functions

Change lighting model

O

O

glLightModel* (Param, value);

GL_LIGHT;MODEL_AMIENT, (0.2,
0.2, 0.2)

GL LIGHT MODEL LOCAL VIEWER,
GL FALSE

GL LIGHT MODEL TWO SIDED,
GL FALSE

[Spotlights

Use glLightf to set //
o Direction £

GL SPOT DIRECTION <&

o Cutoff GL. SPOT CUTOFF |

- - Intensity

o Exponent A
GL SPOT EXPONENT

Shininess controlled by -

COS%p 0 ¢ 9

P

[I\/Ioving Light Sources

Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

Depending on where we place the position
(direction) setting function, we can

Move the light source(s) with the object(s)

Fix the object(s) and move the light source(s)
Fix the light source(s) and move the object(s)

Move the light source(s) and object(s)
iIndependently

O O O O

[Materials Specifications

Material reflective parameters are
specified through the functions:

O glMaterialfv (face, type,
pointer to array);

O glMaterialf (face, wvalue);

For Example:

0 glMaterialfv (GL FRONT AND BACK,
GL AMBIENT, ambient);

[Material Properties

To specify different front- and back-
face properties

o Use GL FRONT or GL BACK
The shininess of a surface (specular-
reflection term) is specified as follows:

0 glMatrialg(GL FRONT,
GL_SHININESS, 100.0);

Material Properties

GLfloat ambient[] = {
GLfloat diffuse[] = {
GLfloat specular|[] =
GLfloat shine = 100.0

glMaterialf (GL FRONT,
glMaterialf (GL FRONT,
glMaterialf (GL FRONT,
glMaterialf (GL FRONT,

GL_AMBIENT, ambient);
GL DIFFUSE, diffuse);
GL SPECULAR, specular);
GL SHININESS, shine);

Emissive Term

We can simulate a light source In
OpenGL by giving a material an emissive
component

This color is unaffected by other light
sources.

Red light Green Emissive

GLfloat emission[] = 0.0, 0.8, 0.1, 1.0);
glMaterialf (GL FRONT, GL EMISSION, emission);

[Steps in OpenGL shading

Enable shading and select model
Specify normals

Specify material properties
Specify lights

Efficiency

Because material properties are part of the
state, if we change materials for many
surfaces, we can affect performance

We can make the code cleaner by defining a
material structure and setting all materials
during initialization
typedef struct materialStruct ({
GLfloat ambient[4];
GLfloat diffuse[4];
GLfloat specular([4];
GLfloat shineness;
} MaterialStruct;

We can then select a material by a pointer

[Smooth Shading

m We can set a new
normal at each vertex

= Easy for sphere model
o If centered at originn=p
= Now smooth shading
works
= Note silhouette edge —

[Gouraud and Phong Shading

Gouraud Shading

o Find average normal at each vertex (vertex
normals)

o Apply Phong model at each vertex

o Interpolate vertex shades across each polygon
Phong shading

o Find vertex normals

o Interpolate vertex normals across edges

o Find shades along edges

o Interpolate edge shades across polygons

[Comparison

If the polygon mesh approximates surfaces
with a high curvatures, Phong shading may
look smooth while Gouraud shading may
show edges

Phong shading requires much more work
than Gouraud shading

o Usually not available in real time systems

Both need data structures to represent
meshes so we can obtain vertex normals

