
CS312

OpenGL
Lights and Materials

Light and Matter
  From a physical perspective, a surface

can either
  emit light by self-emission (as a light bulb)
  reflect light from other sources that illuminate

it.

Interaction Between Light and
Surfaces

  (a) specular
  (b) diffuse
  (c) translucent

Light Sources

  Light can leave a surface through
  self-emission and reflection.

  What specifies a light source
  position
  direction
  intensity

Color Sources
  Not only do light sources emit different

amounts of light at different
frequencies, but also their directional
properties vary with frequency.

  Our visual system is based upon three
primaries
  For most applications, it is sufficient to

reduce each light to a 3-component
frequency:

Ambient Lights
  Lights that are designed and positioned to

provide uniform illumination throughout the
room (kitchens, classrooms).

  Achieved with light sources that have
diffusers whose purpose is to scatter light in
all directions.
  Florescent lights have covers designed to do this.

  To the lit surface, ambient light has no
apparent direction.

Point Sources (Diffuse)
  An ideal point source emits light equally in all

directions.
  To the lit surface, diffuse light is directional.
  The intensity of illumination proportional to

the distance, and also depends on the angle
of impact.

Spotlights
  Spotlights are characterized by a

narrow range of angles through which
light is emitted.
  A spotlight can be constructed from a

point source by limiting the angles

Distant Light Sources

  If the light source is far from the
surface, the direction of light is uniform
across the entire surface (the sun).

Parallel Light Rays

  Equivalent to a source that illuminates
objects with parallel rays of light.

  Graphics systems can carry out
rendering calculations more efficiently
for distant light sources than for near
ones.
  OpenGL allows both

Material Properties

  Three different reflections
  ambient
  diffuse
  specular

Ambient Reflection
  The intensity of ambient light is the

same at every point on the surface.
  Some light is absorbed and some is

reflected.
  A surface has of course, three ambient

coefficients and they can be different.
  Hence, a sphere appears yellow under

white ambient light if its blue ambient
coefficient is small and its red and green
coefficients are large.

Diffuse Reflection
  A perfectly diffuse reflector scatters the light

that it reflects equally in all directions.
  Perfectly diffuse surfaces are so rough that

there is no preferred angle of reflection

Specular Reflection

  Only ambient and diffuse reflections
result in shaded but dull, somewhat
chalk-like surfaces.

  The highlights

Normal Vectors

  The surface normal gives the
orientation.

  Given 3 noncollinear points, normal is
  n = (p2-p0) x (p1-p0)
  Be careful about the order of the vectors.

Reversing the order changes the surface
from outward pointing to inward pointing.

GL Normals
  Associate a normal with a vertex through functions

such as
  glNormal3f(nx, ny, nz);
  glNormal3fv(ptr_to_array);
  Normals are modal: if we define a normal before a

sequence of vertices, this normal is associated with all the
vertices

  Set the normal to have unit length so cosine
calculations are correct
  Length can be affected by transformations
  glEnable(GL_NORMALIZE) allows for

autonormalization at a performance penalty

Polygonal Shading
  Consider the polygon mesh shown here.

We will consider three ways to shade
the polygons: flat, interpolative or
Gourand, and Phong shading

Flat Shading

  For a flat polygon, the normal is
constant

  The shading calculations only need to
be carried out once for each polygon.
  glShadeModel(GL_FLAT);

Interpolative and Gourand
Shading

  The normals are computed at each
vertex. Colors and intensities of interior
points are interpolated between
vertices.
  glShadeModel(GL_SMOOTH);

Phong Shading
  Instead of interpolating the intensities,

interpolate the normals
  Then do calculation of intensities

 using the interpolated normal
 (typically at scan conversion)

  Interpolating normals is much more expensive
than interpolating colors in Gourand Shading

  Phong shading (e.g., per pixel shading) can be
implemented using shaders in OpenGL

  Usually done off-line (not supported in OpenGL)

Light Sources in OpenGL

  OpenGL supports the four types of light
sources that we just described, and allows
at least 8 light sources per program.

  Each light source must be individually
specified and enabled.
  glLightfv(source, parameter,

pointer_to_array);
  glLightf(source, parameter, value);

Light Parameters
  The position (or direction) of the light, the amount of

ambient, diffuse, and specular light associated with
a source.
 GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};
 ...
 glLightfv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);

 glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

  Note that we must enable both lighting and all the
particular source lights.

Direction and Position

  When specifying a light position, a light
may either be directional (rays
parallel), or positional.
 float light0_pos[] = {1.0,1.0,1.0,0.0};
 glLightfv(GL_LIGHT0, GL_POSITION, light0_pos);

  If the 4th value is 0 then the light is
directional. Otherwise it is positional.

Other Lighting Functions

  Change lighting model
  glLightModel*(Param, value);
  GL_LIGHT_MODEL_AMIENT, (0.2,

0.2, 0.2)
  GL_LIGHT_MODEL_LOCAL_VIEWER,

GL_FALSE
  GL_LIGHT_MODEL_TWO_SIDED,

GL_FALSE

Spotlights

  Use glLightf to set
  Direction

GL_SPOT_DIRECTION

  Cutoff GL_SPOT_CUTOFF
  Exponent

GL_SPOT_EXPONENT

  Shininess controlled by
cosαφ	

 θ	

-θ	

 φ	

Moving Light Sources
  Light sources are geometric objects whose

positions or directions are affected by the
model-view matrix

  Depending on where we place the position
(direction) setting function, we can
  Move the light source(s) with the object(s)
  Fix the object(s) and move the light source(s)
  Fix the light source(s) and move the object(s)
  Move the light source(s) and object(s)

independently

Materials Specifications

  Material reflective parameters are
specified through the functions:
  glMaterialfv(face, type,

pointer_to_array);
  glMaterialf(face, value);

  For Example:
  glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT, ambient);

Material Properties
  To specify different front- and back-

face properties
  Use GL_FRONT or GL_BACK

  The shininess of a surface (specular-
reflection term) is specified as follows:
  glMatrialg(GL_FRONT,

GL_SHININESS, 100.0);

Material Properties

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shine = 100.0
glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialf(GL_FRONT, GL_SPECULAR, specular);
glMaterialf(GL_FRONT, GL_SHININESS, shine);

Emissive Term
  We can simulate a light source in

OpenGL by giving a material an emissive
component

  This color is unaffected by other light
sources.

GLfloat emission[] = 0.0, 0.8, 0.1, 1.0);
glMaterialf(GL_FRONT, GL_EMISSION, emission);

Red light Green Emissive

+ =

Steps in OpenGL shading

1.  Enable shading and select model
2.  Specify normals
3.  Specify material properties
4.  Specify lights

Efficiency
  Because material properties are part of the

state, if we change materials for many
surfaces, we can affect performance

  We can make the code cleaner by defining a
material structure and setting all materials
during initialization

  We can then select a material by a pointer

typedef struct materialStruct {
 GLfloat ambient[4];
 GLfloat diffuse[4];
 GLfloat specular[4];
 GLfloat shineness;
} MaterialStruct;

Smooth Shading

  We can set a new
normal at each vertex

  Easy for sphere model
  If centered at origin n = p

  Now smooth shading
works

  Note silhouette edge

Gouraud and Phong Shading

  Gouraud Shading
  Find average normal at each vertex (vertex

normals)
  Apply Phong model at each vertex
  Interpolate vertex shades across each polygon

  Phong shading
  Find vertex normals
  Interpolate vertex normals across edges
  Find shades along edges
  Interpolate edge shades across polygons

Comparison

  If the polygon mesh approximates surfaces
with a high curvatures, Phong shading may
look smooth while Gouraud shading may
show edges

  Phong shading requires much more work
than Gouraud shading
  Usually not available in real time systems

  Both need data structures to represent
meshes so we can obtain vertex normals

