
CS312

OpenGL
Viewing Transformations and
Projections

Controlling states
  Enabling features
glEnable(GL_DEPTH_TEST);

  Setting state
glShadeModel(GL_FLAT);
glShadeModel(GL_SMOOTH);

OpenGL Buffers

  Color buffer
  Front and back

  Depth buffer (z-buffer)
  Hidden surface removal

  Clearing buffers
  glClearColor(r,g,b,a);
  glClearDepth(1.0);
  glClear(GL_COLOR_BUFFER_BIT|

GL_DEPTH_BIT);

Depth Buffering
  Request a depth buffer

glutInitDisplayMode(GLUT_DEPTH|…);

  Enable depth buffering
glEnable(GL_DEPTH_TEST);

  Clear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
  Render scene
  Swap color buffers

Moving the Camera

  The First Approach:
  Specify the position indirectly by applying

a sequence of rotations and translations
to the model-view matrix.

  This is a direct application of the
geometric transformations.

Moving the Camera

  We can move the camera to any desired
position by a sequence of rotations and
translations

  Example: side view
  Rotate the camera
  Move it away from origin
  Model-view matrix C = TR

Moving the Camera

  We must be careful for two reasons:
  First, we usually want to define the camera

before we position the objects in the scene.
  Second, transformations on the camera may

appear to be backward from what we might
expect.

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(-90.0, 0.0, 1.0, 0.0)

Viewing APIs

  We can take a different approach to
positioning the camera – We describe
the camera’s position and orientation
in the world frame
  It’s desired location is centered at the

view-reference point (VRP)
  It’s orientation is specified with the view-

plane normal (VPN) and the view-up
vector (VUP)

gluLookAt

  GL uses a more direct method, fortunately.

  gluLookAt(eyex, eyey, eyez, atx,
aty, atz, upx, upy, upz);

gluLookAt

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(…);

//transformations
//draw ojects

The OpenGL Camera
  In OpenGL, initially the world and

camera frames are the same
  Default model-view matrix is an identity

  The camera is located at origin and
points in the negative z direction

  OpenGL also specifies a default view
volume that is a cube with sides of
length 2 centered at the origin
  Default projection matrix is an identity

Default Projection

Default projection is orthogonal
clipped out

z=0

2

Projections in OpenGL

  The View Volume

Frustum
  Define clipping parameters through the

specification of a projection.
  The resulting view volume is a frustum

– which is a truncated pyramid.

Perspectives in OpenGL
  OpenGL has two functions for

specifying perspective views
  glFrustum(xmin, xmax, ymin,

ymax, near, far);

Current Matrix

  The projection matrix determined by
these specifications multiplies the
present matrix.

  A typical sequence
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(xmin, xmax, ymin,

ymax, near, far);

Field of View

  gluPerspective(fovy, aspect,
near, far);

Parallel Viewing in OpenGL

  glOrtho(xmin, xmax, ymin,
ymax, near, far);

glut 3D Primitives

  Cube
  void glutSolidCube(GLdouble size);
  void glutWireCube(GLdouble size);

  Sphere
  void glutSolidSphere(GLdouble radius,

GLint slices, GLint stacks);
  void glutWireSphere(GLdouble radius,

GLint slices, GLint stacks);

glut 3D Primitives

  Teapot
  void glutSolidTeapot(GLdouble

size);
  void glutWireTeapot(GLdouble

size);

  Many other geometric shapes

Defining your own shapes

  Objects are surfaces – hollow inside
  Objects are approximated by flat,

convex polygons
  Each of these polygons (faces) is

given by a set of 3D vertices
  This set of vertices and how they

connect (edges) is known as a mesh

Representing a Mesh

  There are 8 nodes and 12 edges
  5 interior polygons
  6 interior (shared) edges

  Each vertex has a location vi = (xi yi zi)

v1 v2

v7

v6
v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Simple Representation
  Define each polygon by the geometric

locations of its vertices

  Inefficient and unstructured
  Consider moving a vertex to a new

location

glBegin(GL_POLYGON);
 glVertex3f(x1, y1, z1);
 glVertex3f(x2, y2, z2);
 glVertex3f(x7, y7, z7);
glEnd();

Inward and Outward Facing
Polygons
  {v0, v3, v2, v1} and {v1, v0, v3, v2} are equivalent in

that the same polygon will be rendered by
OpenGL but the order {v0, v1, v2, v3} is different

  The first two describe outwardly facing polygons
  OpenGL can treat inward and
outward facing polygons differently

  Use the right-hand rule =>

Geometry vs Topology
  Generally it is a good idea to look for

data structures that separate the
geometry from the topology
  Geometry: locations of the vertices
  Topology: organization of the vertices

and edges
  Topology holds even if geometry changes

Geometry vs Topology
  Example: a cube can be specified with
GL_QUADS or GL_POLYGON 6 times

  Fails to capture the topology
  A polyhedron with 6 faces.
  Each face has 4 vertices
  Each vertex share 3 faces

Vertex Lists
  Put the geometry in an array
  Use pointers from the vertices into this array
  Introduce a polygon list

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

P1
P2
P3
P4
P5

v1
v2
v7

v8
v5
v6

topology geometry

Shared Edges

  Vertex lists will draw filled polygons correctly
but if we draw the polygon by its edges,
shared edges are drawn twice

  Can store mesh by edge list

Edge List

v1 v2

v7

v6
v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1
e2
e3
e4
e5
e6
e7
e8
e9

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

v1
v6

Note polygons are
not represented

Modeling a Cube

GLfloat vertices[][3] =
{{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
 {1.0,1.0,-1.0},{-1.0,1.0,-1.0},{-1.0,-1.0,1.0},
 {1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat colors[][3] =
{{0.0,0.0,0.0},{1.0,0.0,0.0},
 {1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},
 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Drawing a polygon from a list
of indices

void polygon(int a, int b, int c , int d){
 glBegin(GL_POLYGON);
 glColor3fv(colors[a]);
 glVertex3fv(vertices[a]);
 glVertex3fv(vertices[b]);
 glVertex3fv(vertices[c]);
 glVertex3fv(vertices[d]);
 glEnd();
 }

Draw cube from faces

void colorcube(){
 polygon(0,3,2,1);
 polygon(2,3,7,6);
 polygon(0,4,7,3);
 polygon(1,2,6,5);
 polygon(4,5,6,7);
 polygon(0,1,5,4);
}

0

5 6

2

4 7

1

3
Note that vertices are ordered so that
we obtain correct outward facing normals

Efficiency
  The weakness of our approach is that

we are building the model in the
application and must do many function
calls to draw the cube

  Drawing a cube by its faces in the
most straight forward way requires
  6 glBegin, 6 glEnd
  6 glColor
  24 glVertex
  More if we use texture and lighting

Vertex Arrays
  OpenGL provides a facility called vertex

arrays that allows us to store array data in the
implementation

  Six types of arrays supported
  Vertices
  Colors
  Color indices
  Normals
  Texture coordinates
  Edge flags

  We will need only colors and vertices

Initialization
  Using the same color and vertex data, first we

enable
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

  Identify location of arrays
glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous data array

Mapping indices to faces

  Form an array of face indices

  Draw through glDrawElements which
replaces all glVertex and glColor
calls in the display callback

GLubyte cubeIndices[24] = {0,3,2,1,
 2,3,7,6

 0,4,7,3,
 1,2,6,5,
 4,5,6,7,
 0,1,5,4};

Drawing the cube

  Method 1:

  Method 2:

for(i=0; i<6; i++)
 glDrawElements(GL_POLYGON, 4,
 GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw number of indices

glDrawElements(GL_QUADS, 24,
 GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

Idle Callback

  Minimize the amount of computation done in
an idle callback.

  If using idle for animation, stop rendering
when nothing changed, or window not
visible
glutVisibilityFunc(visible);
void visible(int vis) {
 if (vis == GLUT_VISIBLE)
 glutIdleFunc(idle);
 else
 glutIdleFunc(NULL);
}

Back Face Culling

  OpenGL can compute and remove
those faces that are facing away from
the viewer.

  glEnable(GL_CULL);

Timer Callback

  void glutTimerFunc(unsigned int msecs, void
(*func)(int value), value);

  Registers the timer callback func to be
triggered in at least msecs milliseconds.
 #define FR 60
 glutTimerFunc(100, myTimer, 0);
 void myTimer(int v) {

 //update and advance states
 glutPostRedisplay();
 glutTimerFunc(1000/FR, myTimer, v);

 }

