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OpenGL 
Viewing Transformations and 
Projections 



Controlling states 
  Enabling features 
glEnable(GL_DEPTH_TEST);  

  Setting state 
glShadeModel(GL_FLAT); 
glShadeModel(GL_SMOOTH); 



OpenGL Buffers 

  Color buffer 
  Front and back 

  Depth buffer (z-buffer) 
  Hidden surface removal 

  Clearing buffers 
  glClearColor(r,g,b,a); 
  glClearDepth(1.0); 
  glClear(GL_COLOR_BUFFER_BIT|

GL_DEPTH_BIT); 



Depth Buffering 
  Request a depth buffer 

glutInitDisplayMode(GLUT_DEPTH|…); 

  Enable depth buffering 
glEnable(GL_DEPTH_TEST); 

  Clear color and depth buffers 
glClear(GL_COLOR_BUFFER_BIT | 

GL_DEPTH_BUFFER_BIT); 
  Render scene 
  Swap color buffers 



Moving the Camera 

  The First Approach: 
  Specify the position indirectly by applying 

a sequence of rotations and translations 
to the model-view matrix. 

  This is a direct application of the 
geometric transformations. 



Moving the Camera 

  We can move the camera to any desired 
position by a sequence of rotations and 
translations 

  Example: side view 
  Rotate the camera 
  Move it away from origin 
  Model-view matrix C = TR 



Moving the Camera 

  We must be careful for two reasons: 
  First, we usually want to define the camera 

before we position the objects in the scene. 
  Second, transformations on the camera may 

appear to be backward from what we might 
expect. 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity( ); 
glTranslatef(0.0, 0.0, -d); 
glRotatef(-90.0, 0.0, 1.0, 0.0) 



Viewing APIs 

  We can take a different approach to 
positioning the camera – We describe 
the camera’s position and orientation 
in the world frame 
  It’s desired location is centered at the 

view-reference point (VRP) 
  It’s orientation is specified with the view-

plane normal (VPN) and the view-up 
vector (VUP) 



gluLookAt 

  GL uses a more direct method, fortunately. 

  gluLookAt(eyex, eyey, eyez, atx, 
aty, atz, upx, upy, upz); 



gluLookAt 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity( ); 
gluLookAt(…); 

//transformations 
//draw ojects 



The OpenGL Camera 
  In OpenGL, initially the world and 

camera frames are the same 
  Default model-view matrix is an identity 

  The camera is located at origin and 
points in the negative z direction 

  OpenGL also specifies a default view 
volume that is a cube with sides of 
length 2 centered at the origin 
  Default projection matrix is an identity 



Default Projection 

Default projection is orthogonal 
clipped out 
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Projections in OpenGL 

  The View Volume 



Frustum 
  Define clipping parameters through the 

specification of a projection. 
  The resulting view volume is a frustum 

– which is a truncated pyramid. 



Perspectives in OpenGL 
  OpenGL has two functions for 

specifying perspective views  
  glFrustum(xmin, xmax, ymin, 

ymax, near, far); 



Current Matrix 

  The projection matrix determined by 
these specifications multiplies the 
present matrix. 

  A typical sequence 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
glFrustum(xmin, xmax, ymin, 

ymax, near, far); 



Field of View 

  gluPerspective(fovy, aspect, 
near, far); 



Parallel Viewing in OpenGL 

  glOrtho(xmin, xmax, ymin, 
ymax, near, far); 



glut 3D Primitives 

  Cube 
  void glutSolidCube(GLdouble size);  
  void glutWireCube(GLdouble size); 

  Sphere 
  void glutSolidSphere(GLdouble radius, 

GLint slices, GLint stacks);  
  void glutWireSphere(GLdouble radius, 

GLint slices, GLint stacks);   



glut 3D Primitives 

  Teapot 
  void glutSolidTeapot(GLdouble 

size);  
  void glutWireTeapot(GLdouble 

size);  

  Many other geometric shapes 



Defining your own shapes 

  Objects are surfaces – hollow inside 
  Objects are approximated by flat, 

convex polygons 
  Each of these polygons (faces) is 

given by a set of 3D vertices 
  This set of vertices and how they 

connect (edges) is known as a mesh  



Representing a Mesh 

  There are 8 nodes and 12 edges 
  5 interior polygons 
  6 interior (shared) edges 

  Each vertex has a location vi = (xi yi zi) 
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Simple Representation 
  Define each polygon by the geometric 

locations of its vertices 

  Inefficient and unstructured 
  Consider moving a vertex to a new 

location 

glBegin(GL_POLYGON); 
    glVertex3f(x1, y1, z1); 
    glVertex3f(x2, y2, z2); 
    glVertex3f(x7, y7, z7); 
glEnd(); 



Inward and Outward Facing 
Polygons 
  {v0, v3, v2, v1} and {v1, v0, v3, v2} are equivalent in 

that the same polygon will be rendered by 
OpenGL but the order {v0, v1, v2, v3} is different 

  The first two describe outwardly facing polygons 
  OpenGL can treat inward and  
outward facing polygons differently 

  Use the right-hand rule =>  



Geometry vs Topology 
  Generally it is a good idea to look for 

data structures that separate the 
geometry from the topology 
  Geometry: locations of the vertices 
  Topology: organization of the vertices 

and edges 
  Topology holds even if geometry changes 



Geometry vs Topology 
  Example: a cube can be specified with 
GL_QUADS or GL_POLYGON 6 times 

  Fails to capture the topology 
  A polyhedron with 6 faces.   
  Each face has 4 vertices 
  Each vertex share 3 faces 



Vertex Lists 
  Put the geometry in an array 
  Use pointers from the vertices into this array 
  Introduce a polygon list 

x1 y1 z1 
x2 y2 z2 
x3 y3 z3 
x4 y4 z4 
x5 y5 z5. 
x6 y6 z6 
x7 y7 z7 
x8 y8 z8 
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Shared Edges 

  Vertex lists will draw filled polygons correctly 
but if we draw the polygon by its edges, 
shared edges are drawn twice 

  Can store mesh by edge list 



Edge List 
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Modeling a Cube 

GLfloat vertices[][3] =  
{{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0}, 
 {1.0,1.0,-1.0},{-1.0,1.0,-1.0},{-1.0,-1.0,1.0}, 
 {1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}}; 

GLfloat colors[][3] = 
{{0.0,0.0,0.0},{1.0,0.0,0.0}, 
 {1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0}, 
 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}}; 



Drawing a polygon from a list 
of indices  

void polygon(int a, int b, int c , int d){ 
   glBegin(GL_POLYGON); 
      glColor3fv(colors[a]); 
      glVertex3fv(vertices[a]); 
      glVertex3fv(vertices[b]); 
      glVertex3fv(vertices[c]); 
      glVertex3fv(vertices[d]); 
    glEnd(); 
 } 



Draw cube from faces 

void colorcube(){ 
    polygon(0,3,2,1); 
    polygon(2,3,7,6); 
    polygon(0,4,7,3); 
    polygon(1,2,6,5); 
    polygon(4,5,6,7); 
    polygon(0,1,5,4); 
} 
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Note that vertices are ordered so that  
we obtain correct outward facing normals 



Efficiency 
  The weakness of our approach is that 

we are building the model in the 
application and must do many function 
calls to draw the cube 

  Drawing a cube by its faces in the 
most straight forward way requires 
  6 glBegin, 6 glEnd 
  6 glColor 
  24 glVertex 
  More if we use texture and lighting 



Vertex Arrays 
  OpenGL provides a facility called vertex 

arrays that allows us to store array data in the 
implementation 

  Six types of arrays supported 
  Vertices 
  Colors 
  Color indices 
  Normals 
  Texture coordinates 
  Edge flags 

  We will need only colors and vertices 



Initialization 
  Using the same color and vertex data, first we 

enable 
glEnableClientState(GL_COLOR_ARRAY); 
glEnableClientState(GL_VERTEX_ARRAY); 

  Identify location of arrays 
glVertexPointer(3, GL_FLOAT, 0, vertices); 

glColorPointer(3, GL_FLOAT, 0, colors); 

3d arrays stored as floats data contiguous data array 



Mapping indices to faces 

  Form an array of face indices 

  Draw through glDrawElements which 
replaces all glVertex and glColor 
calls in the display callback  

GLubyte cubeIndices[24] = {0,3,2,1, 
       2,3,7,6 

           0,4,7,3, 
           1,2,6,5, 
           4,5,6,7, 
           0,1,5,4}; 



Drawing the cube 

  Method 1: 

  Method 2: 

for(i=0; i<6; i++)  
  glDrawElements(GL_POLYGON, 4,  
      GL_UNSIGNED_BYTE, &cubeIndices[4*i]); 

format of index data start of index data 

what to draw number of indices 

glDrawElements(GL_QUADS, 24,  
    GL_UNSIGNED_BYTE, cubeIndices); 

Draws cube with 1 function call!! 



Idle Callback 

  Minimize the amount of computation done in 
an idle callback. 

  If using idle for animation, stop rendering 
when nothing changed, or window not 
visible 
glutVisibilityFunc(visible); 
void visible(int vis) { 
  if (vis == GLUT_VISIBLE) 
   glutIdleFunc(idle);  
  else  
   glutIdleFunc(NULL);  
}    



Back Face Culling 

  OpenGL can compute and remove 
those faces that are facing away from 
the viewer. 

  glEnable(GL_CULL); 



Timer Callback 

  void glutTimerFunc(unsigned int msecs, void 
(*func)(int value), value);  

  Registers the timer callback func to be 
triggered in at least msecs milliseconds.  
 #define FR 60 
 glutTimerFunc(100, myTimer, 0); 
 void myTimer(int v) { 

     //update and advance states 
     glutPostRedisplay();  
   glutTimerFunc(1000/FR, myTimer, v); 

  } 


