
CS312

OpenGL
Modeling Transformations

OpenGL Matrices

  In OpenGL matrices are part of the state
  Three types

  Model-View (GL_MODELVIEW)
  Projection (GL_PROJECTION)
  Texture (GL_TEXTURE) (ignore for now)

  Single set of functions for manipulation
  Select which to manipulated by

  glMatrixMode(GL_MODELVIEW);
  glMatrixMode(GL_PROJECTION);

Current Transformation Matrix
(CTM)

  Conceptually there is a 4 x 4
homogeneous coordinate matrix, the
current transformation matrix (CTM) that
is applied to all vertices that pass down
the pipeline

  The CTM is defined in the user program
and loaded into a transformation unit

CTM vertices vertices
p p’=Cp

C

CTM operations
  The CTM can be altered either by loading a

new CTM or by postmutiplication
Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S

CTM in OpenGL

  OpenGL has a model-view and a
projection matrix in the pipeline which
are concatenated together to form the
CTM

  Can manipulate each by first setting
the correct matrix mode

Matrix Operations
  Specify current matrix stack

glMatrixMode(GL_MODELVIEW) or
glMatrixMode(GL_PROJECTION)

  Matrix operations
  glLoadIdentity()
  glPushMatrix()
  glPopMatrix()
  glLoadMatrix()
  glMultMatrix()

Modeling Transformations

  Translation
  glTranslate{fd}(x,y,z)

  Rotation around arbitrary axis
  glRotate{fd}(angle, x,y,z)

  Scaling
  glScale{fd}(x,y,z)

  Multiplies onto the current matrix (use
GL_MODELVIEW)

Order of Transformations
  OpenGL post-multiplies matrices
  Operations occur in reverse order

glLoadIdentity();
glMultMatrix(M);
glMultMatrix(N); CIMNO(v)
glMultMatrix(O);
glBegin(GL_POINTS);
glVertex3fv(v);
glEnd();

Post-multiplication: Rotation
about a Fixed Point

  Start with identity matrix: C ← I
  Move fixed point to origin: C ← CT

  Rotate: C ← CR
  Move fixed point back: C ← CT -1
  Result: C = TR T –1 which is backwards.
  This result is a consequence of doing

postmultiplications.

Reversing the Order
  We want C = T –1 R T

  C ← I
  C ← CT -1

  C ← CR
  C ← CT
  Each operation corresponds to one function call in

the program.
  Note that the last operation specified is the first

executed in the program

Example

  Rotation about z axis by 30 degrees with a
fixed point of (1.0, 2.0, 3.0)

  Remember that last matrix specified in the
program is the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Arbitrary Matrices
  Can load and multiply by matrices

defined in the application program

  The matrix m is a one dimension array of
16 elements which are the components
of the desired 4 x 4 matrix stored by
columns

  In glMultMatrixf, m multiplies the
existing matrix on the right

glLoadMatrixf(m)
glMultMatrixf(m)

Matrix Stacks
  In many situations we want to save

transformation matrices for use later
  Traversing hierarchical data structures
  Avoiding state changes when executing

display lists (introduced later)
  OpenGL maintains stacks for each type of

matrix
  Access present type (as set by

glMatrixMode) by glPushMatrix()
glPopMatrix()

Matrix Stack
  Code often looks like this:

 glPushMatrix();
 glTranslatef(…);
glRotatef(…);
/* draw object */
glPopMatrix();

Reading Back Matrices
  Can also access matrices (and other

parts of the state) by query functions

  For matrices, we use as

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

double m[16];
glGetFloatv(GL_MODELVIEW, m);

Smooth Rotation
  From a practical standpoint, we are often

want to use transformations to move and
reorient an object smoothly
  Problem: find a sequence of model-view

matrices M0,M1,…..,Mn so that when they
are applied successively to one or more
objects we see a smooth transition

  For orientating an object, we can use the
fact that every rotation corresponds to part
of a great circle on a sphere
  Find the axis of rotation and angle

Incremental Rotation
  Consider the two approaches

  For a sequence of rotation matrices
R0,R1,…..,Rn , find the Euler angles for
each and use Ri= Riz Riy Rix

  Not very efficient
  Use the final positions to determine the

axis and angle of rotation, then increment
only the angle

Animate with the Idle Callback
 void draw() {
 glPushMatrix();
 glRotatef(angle, 0,0,1);
 // draw
 glPopMatrix();
 glutSwapBuffers();
 }
 void animate() {

 angle += 2.0;
 glutPostRedisplay();

}
glutIdleFunc(animate);

Double buffering

  Two color buffers so that when one is
displayed, the other is being redrawn.

  When drawing is complete, buffers are
swapped.

  The viewer never sees an incompletely
drawn buffer.

  Eliminates flickering.

Animation using Double
Buffering

  Requests a double buffered color
buffer

  Clear color buffer
glClear(GL_COLOR_BUFFER_BIT)

  Render scene
  Request swapping of front and back

buffers

Double buffering in GL

  glInitDisplayMode(GLUT_DOUBLE);
  void display() {
 glClear(GL_COLOR_BUFFER_BIT);
 ...

 glutSwapBuffers();
 }

  glutSwapBuffers() flushes automatically

