
Computer Graphics

Surfaces

Based on slides by Dianna Xu, Bryn Mawr College

Parametric Surfaces

  Generalizing from curves to surfaces by using
two parameters u and v

  Parametric surfaces can be either rectangular or
triangular, depending on how the parameter
plane is divided

Parametric Surfaces

  Parametric surface:

  Cubic interpolating patch:

Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3
determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3

Interpolating Patch

Need 16 conditions to determine the 16 coefficients cij

Choose at u,v = 0, 1/3, 2/3, 1

Approximating Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

slope p’(0) slope p’(1)

u

Bezier Matrix

blending functions

Blending Functions

Note that all zeros are at 0 and 1 which forces
the functions to be smooth over (0,1)

Bezier Patches
Using same data array P=[pij] as with interpolating form

Patch lies in
convex hull

Bézier Surfaces

  Defined in terms of a two dimensional
control net

B-spline Surfaces: local flexibility
  Local flexibility is one of the most desirable

properties of B-splines
  Modification of a control point only affects a small

neighborhood

B-Spline Patches

defined over only 1/9 of region

Basis Functions

In terms of the blending polynomials

Evaluating Polynomials

  Simplest method to render a polynomial
curve is to evaluate the polynomial at many
points and form an approximating polyline

  For surfaces we can form an approximating
mesh of triangles or quadrilaterals

  Use Horner’s method to evaluate
polynomials

  3 multiplications/evaluation for cubic

Finite Differences
For equally spaced {uk} we define finite differences

For a polynomial of degree n, the nth finite difference is
constant

Building a Finite Difference Table

Finding the Next Values

 Starting at the bottom, we can work up
generating new values for the polynomial

de Casteljau Recursion

  We can use the convex hull property of
Bezier curves to obtain an efficient
recursive method that does not require
any function evaluations

  Uses only the values at the control points
  Repeatedly refine the control polygon until

point on curve is reached.

Splitting a Cubic Bezier
p0, p1 , p2 , p3 determine a cubic Bezier polynomial
and its convex hull

Consider left half l(u) and right half r(u)

Efficient Form

l0 = p0
r3 = p3
l1 = ½(p0 + p1)
r2 = ½(p2 + p3)
l2 = ½(l1 + ½(p1 + p2))
r1 = ½(r2 + ½(p1 + p2))
l3 = r0 = ½(l2 + r1)

Requires only shifts and adds!

Every Curve is a Bezier Curve

  We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve.

  Suppose that p(u) is given as an interpolating
curve with control points Q.

  There exist Bezier control points P such that

  Equating and solving, we find

Example

These three curves were all generated from the same
original data using Bezier recursion by converting all
control point data to Bezier control points

Bezier Interpolating B Spline

Surfaces

  Can apply the recursive method to surfaces if
we recall that for a Bezier patch curves of
constant u (or v) are Bezier curves in u (or v)

  First subdivide in u
  Process creates new points
  Some of the original points are discarded

original and kept new

original and discarded

Second Subdivision

16 final points for
1 of 4 patches created

Utah Teapot

  Most famous data set in computer graphics
  Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

What Does OpenGL Support?

  Evaluators: a general mechanism for working
with the Bernstein polynomials
  Can use any degree polynomials
  Can use in 1-4 dimensions
  Automatic generation of normals and texture

coordinates
  NURBS supported in GLU

  Quadrics
  GLU and GLUT contain polynomial

approximations of quadrics

One-Dimensional Evaluators

  Evaluate a Bernstein polynomial of any
degree at a set of specified values

  Can evaluate a variety of variables
  Points along a 2, 3 or 4 dimensional curve
  Colors
  Normals
  Texture Coordinates

  We can set up multiple evaluators that are
all evaluated for the same value

Setting Up an Evaluator

glMap1f(type,u_min,u_max,stride,
 order, pointer_to_array)

what we want to evaluate max and min of u

1+degree of polynomial
pointer to control data

separation between
 data points

Each type must be enabled by glEnable(type)

Example
Consider an evaluator for a cubic Bezier curve over (0,1)

Point cpoints[]={…………..}; * /3d data /*
glMap1f(GL_MAP_VERTEX_3,0.0,1.0,3,4,cpoints);

data are 3D vertices cubic

data are arranged as x,y,z,x,y,z……
three floats between data points in array

glEnable(GL_MAP_VERTEX_3);

Evaluating

  The function glEvalCoord1f(u) causes all
enabled evaluators to be evaluated for the
specified u
  Can replace glVertex, glNormal,
glTexCoord

  The values of u need not be equally
spaced

Example

  Consider the previous evaluator that was
set up for a cubic Bezier over (0,1)

  Suppose that we want to approximate the
curve with a 100 point polyline

glBegin(GL_LINE_STRIP)
 for(i=0; i<100; i++)
 glEvalCoord1f((float) i/100.0);
glEnd();

Equally Spaced Points

 Rather than using a loop, we can set up an
equally spaced mesh (grid) and then evaluate it
with one function call

glMapGrid(100, 0.0, 1.0);

sets up 100 equally-spaced points on (0,1)

glEvalMesh1(GL_LINE, 0, 99);

renders lines between adjacent evaluated
points from point 0 to point 99

Bezier Surfaces

  Similar procedure to 1D but use 2D evaluators in
u and v

 glMap2f(type, u_min, umax, u_stride,
u_order, v_min, v_max, v_stride,
v_order, pointer_to_data)

  Evaluate with glEvalCoord2f(u,v)

Example
bicubic over (0,1) x (0,1)

Point cpoints[4][4]={………};
glMap2f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4,
 0.0, 1.0, 12, 4, cpoints);

Note that in v direction data points
are separated by 12 floats since array
data is stored by rows

Rendering with Lines

for(j=0;j<100;j++) {
 glBegin(GL_LINE_STRIP);
 for(i=0;i<100;i++)
 glEvalCoord2f((float) i/100.0, (float) j/100.0);
 glEnd();
 glBegin(GL_LINE_STRIP);
 for(i=0;i<100;i++)
 glEvalCoord2f((float) j/100.0, (float) i/100.0);
 glEnd();
}

must draw in both directions

Rendering with Quadrilaterals

for(j=0; j<99; j++) {
 glBegin(GL_QUAD_STRIP);
 for(i=0; i<100; i++) {
 glEvalCoord2f ((float) i/100.0,
 (float) j/100.0);
 glEvalCoord2f ((float)(i+1)/100.0,
 (float)j/100.0);
 }
 glEnd():
}

Form a quad mesh and render with lines

Uniform Meshes

  We can form a 2D mesh (grid) in a similar
manner to 1D for uniform spacing
glMapGrid2(u_num, u_min, u_max,
v_num, v_min, v_max)

  Can evaluate as before with lines or if
want filled polygons
glEvalMesh2(GL_FILL, u_start,
u_num, v_start, v_num)

Rendering with Lighting

  If we use filled polygons, we have to
shade or we will see solid color uniform
rendering

  Can specify lights and materials but we
need normals
  Let OpenGL find them
glEnable(GL_AUTO_NORMAL);

NURBS

  OpenGL supports NURBS surfaces through
the GLU library

  Why GLU?
  Can use evaluators in 4D with standard OpenGL

library
  Many complexities with NURBS that need a lot

of code
  There are five NURBS surface functions plus

functions for trimming curves that can remove
pieces of a NURBS surface

Quadrics

  Quadrics are in both the GLU and GLUT
libraries
  Both use polygonal approximations where the

application specifies the resolution
  Sphere: lines of longitude and lattitude

  GLU: disks, cylinders, spheres
  Can apply transformations to scale, orient, and

position
  GLUT: Platonic solids, torus, Utah teapot, cone

GLUT Objects

glutWireCone()
glutWireTorus()

glutWireTeapot()

GLUT Platonic Solids

glutWireTetrahedron()

glutWireOctahedron()

glutWireDodecahedron()

glutWireIcosahedron()

Quadric Objects in GLU

  GLU can automatically generate normals and
texture coordinates

  Quadrics are objects that include properties such
as how we would like the object to be rendered

disk partial disk sphere

Defining a Cylinder

GLUquadricOBJ *p;
P = gluNewQuadric(); /*set up object */
gluQuadricDrawStyle(GLU_LINE);/*render
style*/
gluCylinder(p, BASE_RADIUS, TOP_RADIUS,
 BASE_HEIGHT, sections, slices);

