Computer Graphics

Surfaces

Based on slides by Dianna Xu, Bryn Mawr College

Parametric Surfaces

m Generalizing from curves to surfaces by using
two parameters u and v

m Parametric surfaces can be either rectangular or
triangular, depending on how the parameter
plane is divided

Parametric Surfaces

m Parametric surface:

Muy) =

m Cubic interpolating patch:

pUV) = E zb.,t b (v)p.

Interpolating Curve

O
P

O O
Py P,

Given four data (control) points p, , p; P, > P3
determine cubic p(u) which passes through them

Must find ¢, ,¢, ,¢, , €;

Interpolating Patch

Need 16 conditions to determine the 16 coefficients C;
Choose atu,v=0, 1/3, 2/3, 1

Approximating Derivatives

Pi P>

p, located at u=1/3 p, located at u=2/3

P =P o Pi=Ps
] l - =
1/3 U=

-

p’ (1)) »=

slope p’(0) slope p*(1)
Po . O p;

Bezier Matrix

pu)=u M P =bu) P

blending functions

Blending Functions

(|l - lc’li
3u(l = u)

2u (1l - u

u

Note that all zeros are at 0 and 1 which forces
the functions to be smooth over (0,1)

Bezier Patches

Using same data array P=[p;] as with interpolating form

Auy)= }: }:h_ ()b (V)p., =u' M, PM_v

Patch lies in
convex hull

Bézier Surfaces

m Defined in terms of a two dimensional

B-spline Surfaces: local flexibility

m Local flexibility is one of the most desirable
properties of B-splines

s Modification of a control point only affects a small
neighborhood

B-Spline Patches

uy) = E }:h ()b (V)p, =u' M PM:v

defined over only 1/9 of region

Basis Functions

In terms of the blending polynomials

bi{u+ 1) bylu)

| D(u+l) I<lsusi
Bu) =1
biu) isusi+l

b.(u=1) i+lsusi+?2

0 wuzi+2

Evaluating Polynomials

m Simplest method to render a polynomial
curve is to evaluate the polynomial at many
points and form an approximating polyline

m For surfaces we can form an approximating
mesh of triangles or quadrilaterals

m Use Horner's method to evaluate
polynomials
PAU) =C, 4 UC, +UC, +UC,))

3 multiplications/evaluation for cubic

Finite Differences

For equally spaced {u,} we define finite differences
AVplu)= plu,)

ANVpluy) = plu,,,)= plu,)

AT p(u)= "p(u,,,)=A""p(u,)

For a polynomial of degree n, the n'" finite difference is
constant

Building a Finite Difference Table

) =14 3u4+2u” +u

109 191

v

Finding the Next Values

Starting at the bottom, we can work up
generating new values for the polynomial

de Casteljau Recursion

m \We can use the convex hull property of
Bezier curves to obtain an efficient
recursive method that does not require
any function evaluations

m Uses only the values at the control points

m Repeatedly refine the control polygon until
point on curve is reached.

Splitting a Cubic Bezier

Po> P1 > P2 > P; determine a cubic Bezier polynomial
and its convex hull

Consider left half 1(u) and right half r(u)

Efficient Form

L, ="+ %(p; +p,)
;= "(t,+ 2(p; t pp)
l=ry="(l,+1))

Requires only shifts and adds!

Every Curve is a Bezier Curve

m We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve.

m Suppose that p(u) is given as an interpolating
curve with control points Q.

pu)=u M, 0

m [here exist Bezier control points P such that
ou)=u M_P

s Equating and solving, we find
P=M;"M,Q

Example

These three curves were all generated from the same
original data using Bezier recursion by converting all
control point data to Bezier control points

~ e

Bezier Interpolating B Spline

Surfaces

m Can apply the recursive method to surfaces if
we recall that for a Bezier patch curves of
constant u (or v) are Bezier curves in u (or v)

m First subdivide in u

Process creates new points
Some of the original points are discarded

original and discarded

Second Subdivision

® New points created by subdivision
O Old points discarded after subdivision
® Old points retained after subdivision

16 final points for
1 of 4 patches created

Utah Teapot

m Most famous data set in computer graphics

m Widely available as a list of 306 3D vertices and
the indices that define 32 Bezier patches

T T

P ; =
/580 R EERRL
'I'I.ll..- EEERRY

R \\“II--l.ln;;
--.

\“-_—_---..'l
\“-____ - --..'l

What Does OpenGL Support?

m Evaluators: a general mechanism for working
with the Bernstein polynomials

Can use any degree polynomials
Can use in 1-4 dimensions

Automatic generation of normals and texture
coordinates

NURBS supported in GLU
m Quadrics

GLU and GLUT contain polynomial
approximations of quadrics

One-Dimensional Evaluators

m Evaluate a Bernstein polynomial of any
degree at a set of specified values

m Can evaluate a variety of variables
Points along a 2, 3 or 4 dimensional curve
Colors
Normals
Texture Coordinates

= We can set up multiple evaluators that are
all evaluated for the same value

Setting Up an Evaluator

what we want to evaluate max and min of u

glMaplf (type,u min,u max,stride,
order, pointer to array)

_ separation between
1+degree of polynomial data points

pointer to control data

Each type must be enabled by glEnable (type)

Example

Consider an evaluator for a cubic Bezier curve over (0,1)

Point cpoints[]={......... .}; * /3d data /*
glMaplf (GL MAP VERTEX 3,0.0,1.0,3,4,cpoints) ;

data are 3D vertices cubic

data are arranged as x,y,z,X,y,Z
three floats between data points in array

glEnable (GL MAP VERTEX 3);

Evaluating

m The function glEvalCoordlf (u) causes all
enabled evaluators to be evaluated for the
specified u

Can replace glvertex, glNormal,
glTexCoord

m The values of u need not be equally
spaced

Example

m Consider the previous evaluator that was
set up for a cubic Bezier over (0,1)

m Suppose that we want to approximate the
curve with a 100 point polyline

glBegin (GL LINE STRIP)
for (1=0; 1<100; i++)
glEvalCoordlf((float) i/100.0) ;
glEnd() ;

Equally Spaced Points

Rather than using a loop, we can set up an
equally spaced mesh (grid) and then evaluate it
with one function call

glMapGrid (100, 0.0, 1.0) ;

sets up 100 equally-spaced points on (0,1)

glEvalMeshl (GL LINE, 0, 99);

renders lines between adjacent evaluated
points from point 0 to point 99

Bezier Surfaces

m Similar procedure to 1D but use 2D evaluators In
u and v

glMap2f (type, u min, umax, u stride,
u order, v min, v _max, v _stride,
v_order, pointer to data)

m Evaluate with glEvalCoord2f (u,v)

Example

bicubic over (0,1) x (0,1)

Point cpoints[4] [4]={ }
glMap2f (GL_MAP VERTEX 3, 0.0, 1.0, 3, 4,
0.0, 1.0, 12, 4, cpoints);

Note that in v direction data points
are separated by 12 floats since array
data Is stored by rows

Rendering with Lines

must draw in both directions N
lﬂﬂll!!!gﬂﬁ%>
for (§=0;3j<100;j++) {
glBegin (GL LINE STRIP) ;
for (i=0;1<100;i++)
glEvalCoord2f ((float) i/100.0, (float) 3j/100.0);
glEnd() ;
glBegin (GL_LINE STRIP) ;
for (1i=0;i<100;i++)
glEvalCoord2f ((float) j/100.0, (float) i/100.0);
glEnd() ;

}

Rendering with Quadrilaterals

Form a quad mesh and render with lines

for (3j=0; j3<99; J++) {
glBegin (GL QUAD STRIP) ;
for (i=0; i<100; i++) {
glEvalCoord2f ((float) i1/100.0,
(float) 3/100.0);
glEvalCoord2f ((float) (i+1l)/100.0,
(float) j/100.0) ;

}
glEnd () :

Uniform Meshes

m We can form a 2D mesh (grid) in a similar
manner to 1D for uniform spacing

glMapGrid2 (u num, u min, u max,
V_num, Vv _min, V_max)

m Can evaluate as before with lines or if
want filled polygons

glEvalMesh2 (GL FILL, u start,
u num, v_start, v _num)

Rendering with Lighting

m If we use filled polygons, we have to
shade or we will see solid color uniform
rendering

m Can specify lights and materials but we
need normals

Let OpenGL find them
glEnable (GL AUTO NORMAL) ;

NURBS

m OpenGL supports NURBS surfaces through
the GLU library

= Why GLU?
Can use evaluators in 4D with standard OpenGL
library

Many complexities with NURBS that need a lot
of code
There are five NURBS surface functions plus

functions for trimming curves that can remove
pieces of a NURBS surface

Quadrics

m Quadrics are in both the GLU and GLUT
libraries

Both use polygonal approximations where the
application specifies the resolution

Sphere: lines of longitude and lattitude

m GLU: disks, cylinders, spheres
Can apply transformations to scale, orient, and
position

m GLUT: Platonic solids, torus, Utah teapot, cone

GLUT Objects

glutWireTorus ()

glutWireTeapot ()

GLUT Platonic Solids

glutWireTetrahedron () glutWireDodecahedron ()

glutWireOctahedron () glutWireIcosahedron ()

Quadric Objects in GLU

m GLU can automatically generate normals and
texture coordinates

m Quadrics are objects that include properties such
as how we would like the object to be rendered

r——

Defining a Cylinder

GLUquadricOBJ *p;
P = gluNewQuadric(); /*set up object */
gluQuadricDrawStyle (GLU LINE) ; /*render
style*/
gluCylinder (p, BASE RADIUS, TOP RADIUS,
BASE HEIGHT, sections, slices);

