
Computer Graphics 

Surfaces 

Based on slides by Dianna Xu, Bryn Mawr College 



Parametric Surfaces 

  Generalizing from curves to surfaces by using 
two parameters u and v 

  Parametric surfaces can be either rectangular or 
triangular, depending on how the parameter 
plane is divided 



Parametric Surfaces 

  Parametric surface: 

  Cubic interpolating patch: 



Interpolating Curve 

p0 

p1 

p2 

p3 

Given four data (control) points p0 , p1 ,p2 , p3 
determine cubic p(u) which passes through them 

Must find c0 ,c1 ,c2 , c3 



Interpolating Patch 

Need 16 conditions to determine the 16 coefficients cij 

Choose at u,v = 0, 1/3, 2/3, 1 



Approximating Derivatives 

p0 

p1 
p2 

p3 

p1 located at u=1/3 p2 located at u=2/3 

slope p’(0) slope p’(1) 

u 



Bezier Matrix 

blending functions 



Blending Functions 

Note that all zeros are at 0 and 1 which forces 
the functions to be smooth over (0,1) 



Bezier Patches 
Using same data array P=[pij] as with interpolating form 

Patch lies in 
convex hull 



Bézier Surfaces 

  Defined in terms of a two dimensional 
control net 



B-spline Surfaces: local flexibility 
  Local flexibility is one of the most desirable 

properties of B-splines 
  Modification of a control point only affects a small 

neighborhood 



B-Spline Patches 

defined over only 1/9 of region 



Basis Functions 

In terms of the blending polynomials 



Evaluating Polynomials 

  Simplest method to render a polynomial 
curve is to evaluate the polynomial at many 
points and form an approximating polyline 

  For surfaces we can form an approximating 
mesh of triangles or quadrilaterals 

  Use Horner’s method to evaluate 
polynomials 

  3 multiplications/evaluation for cubic 



Finite Differences 
For equally spaced {uk} we define finite differences 

For a polynomial of degree n, the nth finite difference is 
constant 



Building a Finite Difference Table 



Finding the Next Values 

 Starting at the bottom, we can work up 
generating new values for the polynomial 



de Casteljau Recursion 

  We can use the convex hull property of 
Bezier curves to obtain an efficient 
recursive method that does not require 
any function evaluations 

  Uses only the values at the control points 
  Repeatedly refine the control polygon until 

point on curve is reached.  



Splitting a Cubic Bezier 
p0, p1 , p2 , p3 determine a cubic Bezier polynomial 
and its convex hull 

Consider left half l(u) and right half r(u) 



Efficient Form 

l0 = p0 
r3 = p3 
l1 = ½(p0 + p1) 
r2 = ½(p2 + p3) 
l2 = ½(l1 + ½( p1 + p2)) 
r1 = ½(r2 + ½( p1 + p2)) 
l3 = r0 = ½(l2 + r1) 

Requires only shifts and adds! 



Every Curve is a Bezier Curve 

  We can render a given polynomial using the 
recursive method if we find control points for its 
representation as a Bezier curve.  

  Suppose that p(u) is given as an interpolating 
curve with control points Q. 

  There exist Bezier control points P such that 

  Equating and solving, we find 



Example 

These three curves were all generated from the same 
original data using Bezier recursion by converting all 
control point data to Bezier control points 

Bezier Interpolating B Spline 



Surfaces 

  Can apply the recursive method to surfaces if 
we recall that for a Bezier patch curves of 
constant u (or v) are Bezier curves in u (or v) 

  First subdivide in u  
  Process creates new points  
  Some of the original points are discarded 

original and kept new 

original and discarded 



Second Subdivision 

16 final points for 
1 of 4 patches created 



Utah Teapot 

  Most famous data set in computer graphics 
  Widely available as a list of 306 3D vertices and 

the indices that define 32 Bezier patches 



What Does OpenGL Support? 

  Evaluators: a general mechanism for working 
with the Bernstein polynomials 
  Can use any degree polynomials 
  Can use in 1-4 dimensions 
  Automatic generation of normals and texture 

coordinates 
  NURBS supported in GLU 

  Quadrics 
  GLU and GLUT contain polynomial 

approximations of quadrics 



One-Dimensional Evaluators 

  Evaluate a Bernstein polynomial of any 
degree at a set of specified values 

  Can evaluate a variety of variables 
  Points along a 2, 3 or 4 dimensional curve 
  Colors 
  Normals 
  Texture Coordinates 

  We can set up multiple evaluators that are 
all evaluated for the same value 



Setting Up an Evaluator 

glMap1f(type,u_min,u_max,stride,  
      order, pointer_to_array) 

what we want to evaluate max and min of u 

1+degree of polynomial 
pointer to control data 

separation between 
     data points 

Each type must be enabled by glEnable(type) 



Example 
Consider an evaluator for a cubic Bezier curve over (0,1) 

Point cpoints[]={…………..}; * /3d data /* 
glMap1f(GL_MAP_VERTEX_3,0.0,1.0,3,4,cpoints); 

data are 3D vertices cubic 

data are arranged as x,y,z,x,y,z…… 
three floats between data points in array 

glEnable(GL_MAP_VERTEX_3); 



Evaluating 

  The function glEvalCoord1f(u) causes all 
enabled evaluators to be evaluated for the 
specified u 
  Can replace glVertex, glNormal, 
glTexCoord 

  The values of u need not be equally 
spaced 



Example 

  Consider the previous evaluator that was 
set up for a cubic Bezier over (0,1) 

  Suppose that we want to approximate the 
curve with a 100 point polyline 

glBegin(GL_LINE_STRIP) 
  for(i=0; i<100; i++)  
    glEvalCoord1f( (float) i/100.0); 
glEnd(); 



Equally Spaced Points 

 Rather than using a loop, we can set up an 
equally spaced mesh (grid) and then evaluate it 
with one function call 

glMapGrid(100, 0.0, 1.0); 

sets up 100 equally-spaced points on (0,1) 

glEvalMesh1(GL_LINE, 0, 99); 

renders lines between adjacent evaluated  
points from point 0 to point 99 



Bezier Surfaces 

  Similar procedure to 1D but use 2D evaluators in 
u and v 

 glMap2f(type, u_min, umax, u_stride, 
u_order, v_min, v_max, v_stride, 
v_order, pointer_to_data) 

  Evaluate with glEvalCoord2f(u,v) 



Example 
bicubic over (0,1) x (0,1) 

Point cpoints[4][4]={………}; 
glMap2f(GL_MAP_VERTEX_3, 0.0, 1.0, 3, 4,  
    0.0, 1.0, 12, 4, cpoints); 

Note that in v direction data points 
are separated by 12 floats since array 
data is stored by rows 



Rendering with Lines 

for(j=0;j<100;j++) { 
  glBegin(GL_LINE_STRIP); 
    for(i=0;i<100;i++) 
       glEvalCoord2f((float) i/100.0, (float) j/100.0); 
  glEnd(); 
  glBegin(GL_LINE_STRIP); 
    for(i=0;i<100;i++) 
       glEvalCoord2f((float) j/100.0, (float) i/100.0); 
  glEnd(); 
} 

must draw in both directions 



Rendering with Quadrilaterals 

for(j=0; j<99; j++) { 
  glBegin(GL_QUAD_STRIP); 
    for(i=0; i<100; i++) { 
      glEvalCoord2f ((float) i/100.0,  
          (float) j/100.0); 
      glEvalCoord2f ((float)(i+1)/100.0, 
          (float)j/100.0); 
   } 
   glEnd(): 
} 

Form a quad mesh and render with lines 



Uniform Meshes 

  We can form a 2D mesh (grid) in a similar 
manner to 1D for uniform spacing 
glMapGrid2(u_num, u_min, u_max, 
v_num, v_min, v_max) 

  Can evaluate as before with lines or if 
want filled polygons 
glEvalMesh2( GL_FILL, u_start, 
u_num, v_start, v_num) 



Rendering with Lighting 

  If we use filled polygons, we have to 
shade or we will see solid color uniform 
rendering 

  Can specify lights and materials but we 
need normals 
  Let OpenGL find them 
glEnable(GL_AUTO_NORMAL); 



NURBS 

  OpenGL supports NURBS surfaces through 
the GLU library 

  Why GLU? 
  Can use evaluators in 4D with standard OpenGL 

library 
  Many complexities with NURBS that need a lot 

of code 
  There are five NURBS surface functions plus 

functions for trimming curves that can remove 
pieces of a NURBS surface 



Quadrics 

  Quadrics are in both the GLU and GLUT 
libraries 
  Both use polygonal approximations where the 

application specifies the resolution 
  Sphere: lines of longitude and lattitude 

  GLU: disks, cylinders, spheres 
  Can apply transformations to scale, orient, and 

position  
  GLUT: Platonic solids, torus, Utah teapot, cone 



GLUT Objects 

glutWireCone() 
glutWireTorus() 

glutWireTeapot() 



GLUT Platonic Solids 

glutWireTetrahedron() 

glutWireOctahedron() 

glutWireDodecahedron() 

glutWireIcosahedron() 



Quadric Objects in GLU 

  GLU can automatically generate normals and 
texture coordinates  

  Quadrics are objects that include properties such 
as how we would like the object to be rendered 

disk partial disk sphere 



Defining a Cylinder 

GLUquadricOBJ *p; 
P = gluNewQuadric(); /*set up object */ 
gluQuadricDrawStyle(GLU_LINE);/*render 
style*/ 
gluCylinder(p, BASE_RADIUS, TOP_RADIUS,  
         BASE_HEIGHT, sections, slices); 


