Particle Systems

CS 312

Based on slides from Addison-Wesley and Open Courseware

Introduction

« So far, “polygon based models” only
— Which have achieved extraordinary success

— ... with implementation and use highly
hardware supported, thus, furthering success

— ... but, there are other ways ...
* E.g, see global illumination

« Some things just are not handled well

« Clouds, terrain, plants, crowd scenes,
smoke, fire

— Physical constraints and complex behavior not
part of polygonal modeling

* Procedural methods
— Generate geometric objects in different way
— 1. Describe objects in an algorithmic manner

— 2. Generate polygons only when needed as
part of rendering process

Procedural Methods

3 Approaches

Particles that obey Newton'’s laws

— Systems of thousands of particles capable of
complex behaviors

— Solving sets of differential equations

Language based models
— Formal language for producing objects
— E.g., productions rules

Fractal geometry

— Based on self-similarity of seen in natural
phenomena

— Means to generate models to any level of detail

Procedural noise

— Introduce “controlled randomness” in models

* Turbulent behavior, realistic motion in animation, fuzzy
objects

Physically-based Models

« Recall, “biggest picture” of computer graphics

Creating a world unconstrained by, well, anything

Is a good thing, e.g., scientific visualization of mathematic functions, subatomic
particles and fields, visual representation of designs perhaps not realizable (yet)

Have seen series of techniques, e.g., Phong shading, that “look right”

* And even had a glimpse at what about viewer makes things look right (actually not look
right), e.g., Mach banding

Physically-based modeling

Can now feasibly investigate cg systems that fully model objects obeying all
physical laws ... still a research topic

* Hybrid approach

Combination of basic physics and mathematical constraints to control dynamic
behavior of objects

— Will look at particle systems as an example

« Dynamic behavior of (point) masses determined by solution of sets of coupled
differential equations — will use an easily implemented solution

Kinematics and Dynamics

Kinematics
— Considers only motion

— Determined by positions,
velocities, accelerations

Dynamics

— Considers underlying
forces

— Compute motion from
initial conditions and
physics

Dyamics - Active vs.
Passive

Passive--no muscles or motors

initial

user

conditions

Active--internal source of energy

desired

user

behavior
—

!

state

graphics

forces and

torques

numerical
integrator

model

=

Y

graphics

state

numerical
integrator

particle systems
leaves

water spray
clothing

running human
trotting dog
swimming fish

Particle Systems

 Used to model:

— Natural phenomena
* Clouds
* Terrain
* Plants

— Group behavior
« Animal groups, crowds

— Real physical processes

 |ndividual elements —
— forces, direction attributes

Particle System History

1962: Pixel clouds in “Spacewar!”
— 2nd (or so) digital video game

1978: Explosion physics
simulation in “Asteroids”

1983: “Star Trek Il: Wrath of Kahn”

— William T. Reeves
— 1st cg paper about particle systems
— More later

Now: Everywhere
— Programmable and in firmware
— Tools for creating, e.g., Maya

Particle System History

1983, Reeves, Wrath of Khan

Some 400 particle
systems
— “Chaotic effects”
— To 750k particles
— Genesis planet

Each Particle Had:

Position
. Velocity
. Color
. Lifetime
. Age
. Shape
. Size

. Transparency

Reeves1983: Reeves, William T.; Particle
Systems — Technique for Modeling a Class
of Fuzzy Obijects. In SIGGRAPH
Proceedings 1983, http://portal.acm.org/
citation.cfm?id=357320

Example: Wrath of Khan

Distribution of particles on planet surface

Model spread

“impact
point

Example: Wrath of Khan

Ejection of particles from planet surface

» Will see same approach for collisions

a typical
particle’s
initial
speed &
direction

ejection/
angle

/ a typical /

/ particle’s initial /
/

position

Particle Systems

« Aparticle is a point mass
— Mass
— Position v

— Velocity ./

— Acceleration
— Color p = (X.y.2)
— Lifetime

» Use lots of particles to model complex
phenomena
— Keep array of particles

* For each frame:
— Create new particles and assign attributes
— Delete any expired particles
— Update particles based on attributes & physics
— Render particles

Newtonian Particles

Angel

* Will model a set of particles subject to Newton'’s laws

Though could use any “laws”, even your own

« Particles will obey Newton's second law:

The mass of the particle (m) times the particle’s acceleration (a) is equal to the
sum of the forces (f) acting on the particle

ma = f
Note that both acceleration, a, and force, f, are vectors (usually x, y, z)

With mass concentrated at a single point (an ideal point mass particle), state is
determined completely by it position and velocity

Thus, in a 3d space ideal particle has 6 degrees of freedom, and a system of n
particles has 6n state variables, position and velocity of all particles

Newtonian Particle

Angel

Particle system is a set of particles
— Each particle is an ideal point mass

Six degrees of freedom
— Position
— Velocity

Each particle obeys Newton's law

— f=ma

Particle equations

- Pi= (V%)
— myv,=f

1

Hard part is defining force vector

p=(X.y.2)

Newtonian Particles

Details

« State of the " particle is given by

— Position matrix: -- Velocity matrix: [dx]
X.

1

Vi
Z;

p;, =

« Acceleration is the derivative of velocity and velocity is the derivative
of position, so can write Newton’s second law for a particle as the 6n

coupled first order differential equations
B pz’ =Y

- Vz’ = sz(t)
m;

Simply Put, ...

Particle Dynamics

« Again, for each frame:
— Create new particles and assign attributes
— Delete any expired particles ./%ew
— Update particles based on attributes & physics
— Render particles

Xold

« Particle's position in each succeeding
frame can be computed by knowing its
velocity

— speed and direction of movement

« This can be modified by an acceleration
force for more complex movement, e.g.,
gravity simulation

Solution of Particle Systems

Angel

float time, delta state[6n], force[3n];
state = initial state();
for(time = t0; time<final time, time+=delta) {
force = force function(state, time);
state = ode(force, state, time, delta);
render (state, time)

}

« Update every particle for each time step
— a(t+At) =g
— V(t+At) = v(t) + a(t)*At
— p(t+At) = p(t) + v(t)*At + a(t)2*Dt/2

Solution of ODEs

Angel details

» Particle system has 6n ordinary differential equations

* Write set as du/dt = g(u,t)

« Solve by approximations using Taylor's Theorem

. u(t) + hot)

10

u(f)

Y

t t+h

Solution of ODEs, 2

Angel details

« Euler’'s Method
u(t +h) = u(t) + h du/dt = u(t) + hg(u, t)
Per step error is O(h?)

Require one force evaluation per time step
Problem is numerical instability - depends on step size

 Improved Euler
u(t +h) = u(t) + h/2(g(u, t) + g(u, t+h))

Per step error is O(h3)

Also allows for larger step sizes

But requires two function evaluations per step
Also known as Runge-Kutta method of order 2

Force Vector

Particle System Forces

A number of means to specify forces have been developed

Most simply, independent particles — no interaction with other particles
— Gravity, wind forces
— O(n) calculation

Coupled Particles O(n)

— Meshes
e Useful for cloth
— Spring-Mass Systems

Coupled Particles O(n?)

— Attractive and repulsive forces

Simple Forces

E.g., Gravity

Particle field forces

— Usually can group particles into
equivalent point masses

— E.g.,Consider simple gravity

— Not compute forces due to sun,
moon, and other large bodies

— Rather, we use the gravitational field
— Same for wind forces, drag, etc.

Consider force on particle i
f.=f(p;, V)

Gravity f=g

— Really easy

g =(0,-g,0)

More Complex Force

Local Force — Flow
Field

Stokes Law of drag
force on a sphere
Fq = 6lnr(v-vy)
n = viscosity
r = radius of sphere
C = 6lnr (constant)
v = particle velocity
vy = flow velocity

Sample Flow Field

Meshes

Connect each particle to its

closest neighbors ’
— O(n) force calculation
Use spring-mass system ’.

Spring Forces

Pi j+1
« Used modeling forces, e.g., meshes Yava VA
— Particle connected to its neighbor(s) by a spring Vau _/'Pf—tif‘ Py fef
— Interior point in mesh has four forces applied to it - ‘ 7 _""’7"’:‘ "
— Widely used in graph layout L T~

* Hooke's law: force proportional to distance (d = ||p — q||) between points

w

 Lets be distance when no force

f=-k(d|-s)d/|d]
k. is the spring constant
d/|d| is a unit vector pointed from p to q

Spring Damping

« A pure spring-mass will oscillate forever

 Must add a damping term
f=-(k(d|-s)+k,d-d/|d))d/|d

* Must project velocity

(p-q):(p-q

Attraction and Repulsion

Inverse square law
f=-kd/|d]
General case requires O(n?) calculation

In most problems, the drop off is such that not many particles
contribute to the forces on any given particle

Sorting problem: is it O(n log n)?

Boxes

O(n?) algs when consider
Interactions among all particles

Spatial subdivision technique
Divide space into boxes

Particle can only interact with
particles in its box or the
neighboring boxes

Must update which box a particle
belongs to after each time step

\

Constraints and Collisions

« Constraints
— [Easy in cg to ignore physical reality

« Surfaces are virtual 7

— Must detect collisions if want exact solution R
« O(n?) limiting, O(6) for box sides!
— Can approximate with repulsive forces

» Collisions i
— Once detect a collision, we can calculate new path P,
— Use coefficient of restitution
— Reflect vertical component b

— May have to use partial time step

 (Contact forces

Grass / Hair / Fur

Entire trajectory of a particle over
its lifespan is rendered to produce
a static image

Green and dark green colors
assigned to the particles which
are shaded on the basis of the
scene’s light sources

Each particle becomes a blade of
grass

Also works to create hair, fur, etc.

white.sand by Alvy Ray Smith
(he was also working at Lucasfilm)

Tools - Alias|Wavefront's Maya

Tutorial

http://dma.canisius.edu/~moskalp/
tutorials/Particles/Particles\Web.mov

0] Attribute Editor: particle1

M=%

List Selected Focus Attributes Help

patticlel particleShapel |Parlic|e$ystem| lambert1 |

»
particle: IparticleS hapel i’

General Control Attributes

Emission Attributes [see also emitter tabs)

Lifespan Attributes (see also per-particle tab)

Time Attributes

Collision Attributes

Soft Body Attributes

Goal Weights and Objects

Instancer (Geometry Replacement)

== == ==

Emission Random Stream Seeds

v

Render Attributes

Render Stats

Per Particle [Array) Attributes

position |

rampPosition I

velocity |

rampYelocity |

acceleration |

rampécceleration |

mass I

lifespanPP I

worldVelocity |

Add Dynamic Attributes
General I Opacity Color

Clip Effects Attributes

Sprite Attributes

= I L

Extra Attributes

Select Load Attributes Copy Tab

Close

