
Particle Systems

CS 312

Based on slides from Addison-Wesley and Open Courseware

Introduction
•  So far, “polygon based models” only

–  Which have achieved extraordinary success
–  … with implementation and use highly

hardware supported, thus, furthering success
–  … but, there are other ways …

•  E.g, see global illumination

•  Some things just are not handled well
•  Clouds, terrain, plants, crowd scenes,

smoke, fire
–  Physical constraints and complex behavior not

part of polygonal modeling

•  Procedural methods
–  Generate geometric objects in different way
–  1. Describe objects in an algorithmic manner
–  2. Generate polygons only when needed as

part of rendering process

Procedural Methods
3 Approaches

•  Particles that obey Newton’s laws
–  Systems of thousands of particles capable of

complex behaviors
–  Solving sets of differential equations

•  Language based models
–  Formal language for producing objects
–  E.g., productions rules

•  Fractal geometry
–  Based on self-similarity of seen in natural

phenomena
–  Means to generate models to any level of detail

•  Procedural noise
–  Introduce “controlled randomness” in models

•  Turbulent behavior, realistic motion in animation, fuzzy
objects

Physically-based Models

•  Recall, “biggest picture” of computer graphics
–  Creating a world unconstrained by, well, anything
–  Is a good thing, e.g., scientific visualization of mathematic functions, subatomic

particles and fields, visual representation of designs perhaps not realizable (yet)
–  Have seen series of techniques, e.g., Phong shading, that “look right”

•  And even had a glimpse at what about viewer makes things look right (actually not look
right), e.g., Mach banding

•  Physically-based modeling
–  Can now feasibly investigate cg systems that fully model objects obeying all

physical laws … still a research topic

•  Hybrid approach
–  Combination of basic physics and mathematical constraints to control dynamic

behavior of objects
–  Will look at particle systems as an example

•  Dynamic behavior of (point) masses determined by solution of sets of coupled
differential equations – will use an easily implemented solution

Kinematics and Dynamics
•  Kinematics

–  Considers only motion
–  Determined by positions,

velocities, accelerations

•  Dynamics
–  Considers underlying

forces
–  Compute motion from

initial conditions and
physics

•  Dyamics - Active vs.
Passive

Particle Systems
•  Used to model:

–  Natural phenomena
•  Clouds
•  Terrain
•  Plants

–  Group behavior
•  Animal groups, crowds

–  Real physical processes

•  Individual elements –
–  forces, direction attributes

Particle System History

•  1962: Pixel clouds in “Spacewar!”
–  2nd (or so) digital video game

•  1978: Explosion physics
simulation in “Asteroids”

•  1983: “Star Trek II: Wrath of Kahn”
–  William T. Reeves
–  1st cg paper about particle systems
–  More later

•  Now: Everywhere
–  Programmable and in firmware
–  Tools for creating, e.g., Maya

•  x

•  x

Particle System History
1983, Reeves, Wrath of Khan

•  Some 400 particle
systems

–  “Chaotic effects”
–  To 750k particles
–  Genesis planet

•  Each Particle Had:
•  Position
•  Velocity
•  Color
•  Lifetime
•  Age
•  Shape
•  Size
•  Transparency

•  Reeves1983: Reeves, William T.; Particle
Systems – Technique for Modeling a Class
of Fuzzy Objects. In SIGGRAPH
Proceedings 1983, http://portal.acm.org/
citation.cfm?id=357320

Example: Wrath of Khan
Distribution of particles on planet surface

•  x

•  Model spread

Example: Wrath of Khan
Ejection of particles from planet surface

•  Will see same approach for collisions

Particle Systems
•  A particle is a point mass

–  Mass
–  Position
–  Velocity
–  Acceleration
–  Color
–  Lifetime

•  Use lots of particles to model complex
phenomena

–  Keep array of particles

•  For each frame:
–  Create new particles and assign attributes
–  Delete any expired particles
–  Update particles based on attributes & physics
–  Render particles

Newtonian Particles
Angel

•  Will model a set of particles subject to Newton’s laws
–  Though could use any “laws”, even your own

•  Particles will obey Newton’s second law:
–  The mass of the particle (m) times the particle’s acceleration (a) is equal to the

sum of the forces (f) acting on the particle
–  ma = f
–  Note that both acceleration, a, and force, f, are vectors (usually x, y, z)
–  With mass concentrated at a single point (an ideal point mass particle), state is

determined completely by it position and velocity
–  Thus, in a 3d space ideal particle has 6 degrees of freedom, and a system of n

particles has 6n state variables, position and velocity of all particles

Newtonian Particle
Angel

•  Particle system is a set of particles
–  Each particle is an ideal point mass

•  Six degrees of freedom
–  Position
–  Velocity

•  Each particle obeys Newton’s law
–  f = ma

•  Particle equations
–  pi = (xi, yi zi)
–  vi = dpi /dt = pi

‘
 = (dxi /dt, dyi /dt , zi /dt)

–  m vi
‘= fi

•  Hard part is defining force vector

Newtonian Particles
Details

•  State of the ith particle is given by

–  Position matrix: -- Velocity matrix:

•  Acceleration is the derivative of velocity and velocity is the derivative
of position, so can write Newton’s second law for a particle as the 6n
coupled first order differential equations

–  .

–  .

Simply Put, …
Particle Dynamics

•  Again, for each frame:
–  Create new particles and assign attributes
–  Delete any expired particles
–  Update particles based on attributes & physics
–  Render particles

•  Particle's position in each succeeding
frame can be computed by knowing its
velocity

–  speed and direction of movement

•  This can be modified by an acceleration
force for more complex movement, e.g.,
gravity simulation

Solution of Particle Systems
Angel

float time, delta state[6n], force[3n];!
!state = initial_state();!
!for(time = t0; time<final_time, time+=delta) {!
! !force = force_function(state, time);!
! !state = ode(force, state, time, delta);!
! !render(state, time)!
! !}!

•  Update every particle for each time step
–  a(t+Δt) = g
–  v(t+Δt) = v(t) + a(t)*Δt
–  p(t+Δt) = p(t) + v(t)*Δt + a(t)2*Dt/2

Solution of ODEs
Angel details

•  Particle system has 6n ordinary differential equations

•  Write set as du/dt = g(u,t)

•  Solve by approximations using Taylor’s Theorem

Solution of ODEs, 2
Angel details

•  Euler’s Method
 u(t + h) ≈ u(t) + h du/dt = u(t) + hg(u, t)
 Per step error is O(h2)
 Require one force evaluation per time step
 Problem is numerical instability - depends on step size

•  Improved Euler
 u(t + h) ≈ u(t) + h/2(g(u, t) + g(u, t+h))
 Per step error is O(h3)
 Also allows for larger step sizes
 But requires two function evaluations per step
 Also known as Runge-Kutta method of order 2

Force Vector
Particle System Forces

•  A number of means to specify forces have been developed

•  Most simply, independent particles – no interaction with other particles
–  Gravity, wind forces
–  O(n) calculation

•  Coupled Particles O(n)
–  Meshes

•  Useful for cloth
–  Spring-Mass Systems

•  Coupled Particles O(n2)
–  Attractive and repulsive forces

Simple Forces
E.g., Gravity

•  Particle field forces
–  Usually can group particles into

equivalent point masses
–  E.g.,Consider simple gravity
–  Not compute forces due to sun,

moon, and other large bodies
–  Rather, we use the gravitational field
–  Same for wind forces, drag, etc.

•  Consider force on particle i
 fi = fi(pi, vi)

•  Gravity fi = g
–  Really easy

 gi = (0, -g, 0)

pi(t0), vi(t0)

More Complex Force

•  Local Force – Flow
Field

•  Stokes Law of drag
force on a sphere
 Fd = 6Πηr(v-vfl)
 η = viscosity
 r = radius of sphere
 C = 6Πηr (constant)
 v = particle velocity
 vfl = flow velocity

Sample Flow Field

Meshes

•  Connect each particle to its
closest neighbors
–  O(n) force calculation

•  Use spring-mass system

Spring Forces

•  Used modeling forces, e.g., meshes
–  Particle connected to its neighbor(s) by a spring
–  Interior point in mesh has four forces applied to it
–  Widely used in graph layout

•  Hooke’s law: force proportional to distance (d = ||p – q||) between points

•  Let s be distance when no force
 f = -ks(|d| - s) d/|d|
 ks is the spring constant
 d/|d| is a unit vector pointed from p to q

Spring Damping

•  A pure spring-mass will oscillate forever

•  Must add a damping term
 f = -(ks(|d| - s) + kd d·d/|d|)d/|d|

•  Must project velocity

·

Attraction and Repulsion

•  Inverse square law
 f = -krd/|d|3

•  General case requires O(n2) calculation
•  In most problems, the drop off is such that not many particles

contribute to the forces on any given particle
•  Sorting problem: is it O(n log n)?

Boxes

•  O(n2) algs when consider
interactions among all particles

•  Spatial subdivision technique

•  Divide space into boxes

•  Particle can only interact with
particles in its box or the
neighboring boxes

•  Must update which box a particle
belongs to after each time step

Constraints and Collisions

•  Constraints
–  Easy in cg to ignore physical reality

•  Surfaces are virtual
–  Must detect collisions if want exact solution

•  O(n2) limiting, O(6) for box sides!
–  Can approximate with repulsive forces

•  Collisions
–  Once detect a collision, we can calculate new path
–  Use coefficient of restitution
–  Reflect vertical component
–  May have to use partial time step

•  Contact forces

Grass / Hair / Fur
•  Entire trajectory of a particle over

its lifespan is rendered to produce
a static image

•  Green and dark green colors
assigned to the particles which
are shaded on the basis of the
scene’s light sources

•  Each particle becomes a blade of
grass

•  Also works to create hair, fur, etc.

white.sand by Alvy Ray Smith
(he was also working at Lucasfilm)

Tools - Alias|Wavefront’s Maya

•  Tutorial
–  http://dma.canisius.edu/~moskalp/

tutorials/Particles/ParticlesWeb.mov

