
Computer Graphics
Ray Tracing

Based on slides by Dianna Xu, Bryn Mawr College

Ray Tracing Example

Created by Anto Matkovic

Ray Tracing Example

Ray Tracing Example

Ray Tracing

•  Most light rays do not reach the eye
•  Start from eye point
•  Cast one ray through each pixel
•  Each ray either intersects or not
•  If no intersection – assign background

color
•  If intersection – trace reflected, refracted,

and shadow rays.

Simple Ray Tracing Algorithm

Color trace(Point p, Vector d, int step) {
 Color local, reflected, transmitted;
 Point q; Vector normal;
 if (step > max) return (background_color);

 q = intersect(p, d, status);
 if (status == no_intersection) return
(background_color);

 normal = do_normal(q);
 Vector reflectdir = reflect(q, normal);
 Vector transdir = transmit(q, normal);

Simple Ray Tracing Algorithm

 // must check shadow ray
 local = phong(q, normal, reflectdir);
 reflected = trace(q, reflectdir, step+1);
 transmitted = trace(q, transdir, step+1);

 return(local+reflected+trasmitted);
}

Ray Tracing with Several Ray
Effects

Ray Tracing Necessary to Render
Superellipsoids

Ray-Sphere Intersection

•  A sphere is described by its center c and
radius r.

•  A point p on sphere:
•  A ray is described by its origin o, and a

direction vector d.
•  A point on a ray has the form:

Ray-Sphere
•  Substituting into sphere equation:

•  Squaring both sides we get:

Quadratic Equation

•  Rewrite as quadratic quation:

•  where

•  Number of solutions depends on
discriminant:

The Discriminant

1.  ==> no solution (ray misses)

2.  ==> one solution (ray tangent)

3.  ==> two solutions (ray punctures)

•  Ray extends only in one direction
(positive t) – want closest intersection –
solution with least non-negative t.

The Result

•  In case 1, report no insersection
•  In case 2, report no intersection if t<0

==> B>0, otherwise return solution (-B/
2A) for t

•  In case 3, return the least positive of
the two solutions for t. If both negative,
report no intersection

•  If there is intersection, then the
intersection point is o+td.

Ray-Triangle Intersection
•  Compute intersection point of ray and the

plane of the given triangle.
•  If there is intersection, decide if the

intersection point lies inside or outside of
the triangle.

Ray-Plane
•  Given vertices a1, a2, a3.
•  Normal:
•  A point p on the plane of triangle:

•  Substituting
•  Solves to

Point inside Triangle
•  Check the cross product:

•  If this cross product has the same
direction as the normal then
point p is on the same side of a1a2 as a3

•  Repeat for the other two edges.

Point inside Triangle

boolean SameSide(Point p,Point a1,Point
a2,Point a3) {

 Vector cp1 = cp(a2-a1, p-a1);
 Vector cp2 = cp(a2-a1, a3-a1);
 if (dp(cp1, cp2)) >= 0
 return true;
 else return false; }
boolean PointInTriangle(Point p,Point
a,Point b,Point c) {

 if (SameSide(p,a,b,c)&& SameSide(p,b,a,c)
&& SameSide(p,c,a,b))

 return true;
 else return false; }

Viewing Geometry for a Simple
Ray Tracer

•  Screen described by a point l – its lower
left corner.

•  Two vectors (h and v) used to iterate
over the raster positions on the target
NDC space.

•  Eye is given by e.
•  Compute ray direction from eye to pixel

(i,j)

Ray Direction

•  To reach the lower left corner of desired
pixel (i,j) from l :

•  The move to the center of the pixel:

•  Direction of ray is a vector from eye to
center of desired pixel:

Simple Viewing Geometry

U

V

H
l

(0,0)

(1,1)

e

P=(i/m,j/n)

The Rays and the Outer Loops

•  Iterate this for each pixel (integer) coordinate
pair.

 for pixel(x,y) x = 0 to width-1
 for pixel(x,y) y = 0 to height-1 {
 R=(l+(i+0.5)/m*h+(j+0.5)/n*v)-e;
 color = raytrace(e, R, 0)
 pixel(x,y) = color;

 }

Antialiasing

•  Ray tracing is a sampling method, and
is thus subject to aliasing errors.

•  Over sample and then average
•  Instead of one ray through the center of

the pixel, shoot multiple rays just
slightly off the original center (left,
right, up, down), and average the
results as the final output.

Antialiased Ray Tracing

•  Adaptive Supersampling (Weighted
sub-pixel averaging)

A B

C
D E F

A B C

D E F

B C

E F

G

H I J

K

B C

E F

G

H I J

K

L

M N O
P

• Cast rays through pixel corners (not centers)
• Take average of corner values

• If one corner differs significantly from average,
• Subdivide, adding 5 corners
• Repeat for each sub-area,

averaging to obtain area value

Value for
pixel BCEF =

Local Reflection Model

•  A simple model that can be computed rapidly
•  The intensity of the reflected light as a function

of:
–  the orientation of the surface
–  with respect to the position of a point light source
–  and surface properties.

•  Physical phenomena simulated
–  Perfect specular reflection
–  Imperfect specular reflection
–  Perfect diffuse reflection

The Phong Model

•  Has three components
–  Diffuse
–  Specular
–  Ambient

•  Uses four vectors
–  To source (l)
–  To viewer (v)
–  Normal (n)
–  Perfect reflector (r)

Ideal Reflector
•  Normal is determined by local orientation
•  Angle of incidence = angle of reflection
•  The three vectors must be coplanar

Perfectly Diffuse Reflector

•  Matte/Lambertian surface
•  Light scattered equally in all directions
•  Amount of light reflected is

proportional to the vertical component
of incoming light
– reflected light depends on cos θ

–  cos θ = l · n if vectors normalized

Specular Surfaces

•  Most surfaces are neither ideal diffusers nor
perfectly specular (ideal reflectors)

•  Smooth surfaces show specular highlights
due to incoming light being reflected in
directions concentrated close to the
direction of a perfect reflection

specular
highlight

Modeling Specular Reflections

•  Phong proposed using a term that dropped
off as the angle φ between the viewer and
the ideal reflection increased

φ	

Ir ~ ks Is cosαφ	

shininess coef

reflection coef
incoming intensity

reflected
intensity

Specular “Bump” Adds to Diffuse
Component

Diffuse
component
(Viewer
independent)

Specular
component
(Viewer
dependent)

The Shininess Coefficient

•  As α increases, the reflected light is
concentrated over a narrower region.

•  Values of α between 100 and 200 correspond to
metals , smaller values give surface that look like
plastic

cosα φ	

φ	
 90 -90

Ambient Light
•  Ambient light is the result of multiple

interactions between (large) light sources
and the objects in the environment

•  Appears to be uniform all over.
•  Add ka Ia to diffuse and specular terms

reflection coef amount of ambient light

Distance Terms

•  The amount of light from a point source
that reaches a surface is inversely
proportional to the square of the
distance between them

•  We can add a factor
 to the diffuse and specular terms

•  The constant and linear terms soften
the effect of the point source

Light Sources
•  In the Phong Model, we add the results

from each light source
•  Each light source has separate diffuse,

specular, and ambient terms
•  Separate red, green and blue components
•  Hence, 9 coefficients for each point light

source
– 

Material Properties
•  Material properties match light source

properties
– 9 reflection coefficients
– 
– Shininess coefficient α

Adding up the Components

•  For each light source and each color component,
the Phong model can be written (without the
distance terms) as

•  For each color component
 we add contributions from
 all sources

Shadow Ray

•  Trace ray from point of intersection
back towards light source.
–  If blocked by another surface before

reaching light, then original point is in
shadow – only lit with ambient term

•  If some surfaces are highly reflective
(mirrors)
– Shadow ray will bounce off and continue
– This is usually done recursively

Reflection and Transmission
•  If a ray hits a surface not in shadow

– Do reflection calculation according to Phong
model

– Cast ray in direction of perfect reflection
– Cast ray in direction of transmitted ray

Transmission Vector

Transmission Vector (cont.)

We now have two equations and two unknowns!

Some algebra and a look at the geometry gives us:

1

Ray Tracing with Recursion

•  Add shadow rays to light sources.
•  Stop at diffuse surface, or when maximum

number of recursive steps exceeded.
•  Color at visible point is established by

recursively combining the shades
computed at the end of each ray – which
depends of course, on what, if anything, it
hits.

Recursive Ray Tracing
•  If an eye ray intersects an object:

–  Cast shadow rays to each light source.
•  diffuse illumination
•  shadows

–  Cast reflection ray, search for object intersection.
•  ambient illumination

–  Cast transmission ray, search for object intersection.
•  Transparency

•  For each new reflection and transmission ray,
repeat.
–  Until no intersection
–  Until N intersections (recursion depth) (3 ≤ N ≤ 7)

Ray Tracing Diagram (Diffuse)

Diffuse
surface

Solid
surface

Translucent
surface

Eye and pixel

Red light

Yellow light

P

P is visible; illuminated by yellow light; but not by red light

Ray Tracing Diagram (Reflective)

Reflective
surface

Solid
surface

Translucent
surface

Eye and pixel

Red light

Yellow light

P

P is visible; illuminated by yellow light; but not by red light

“Typical” Ray Traced Image

Refracted Ray Geometry

Transmitting
surface

N

-N

I

T

= Index of refraction
of substance 1

= Index of refraction
of substance 2 Snell’s Law:

(I and T are coplanar)

Refraction and the Critical Angle

•  Different effect at the critical angle

Transmitting
surface

N

-N

I
T

Refraction and the Critical Angle

•  Internal reflection effect beyond the critical
angle

Transmitting
surface

N

-N

I
T

Index of Refraction
 Medium Index of Refraction

Water 1.33
Ethyl Alcohol 1.36
Carbon Bisulfide 1.63
Air 1.0003
Methylene Iodide 1.74
Fused Quartz 1.46
Glass, Crown 1.52
Glass, Dense Flint 1.66
Sodium Chloride 1.53

Note: These are approximations. The index of
refraction actually differs with each
wavelength of light.

Reflection and Refraction

Closer to Real Glass

Ray Tracing Cost Considerations

COST = X Y 2a (m + 1) (2n - 1) P
•  X = number of pixels horizontally
•  Y = number of pixels vertically
•  a = anti-aliasing super-sampling factor
•  m = number of (point) light sources
•  n = tree (recursion) depth
•  P = number of primitives tested for ray

intersections
if X=Y=1000, a=0, m=1, n=10, P=1000 then
COST ~ 2,046,000,000,000 ray-primitive

intersection tests!

Problems With Ray Tracing
•  Ray/object intersection calculations become

expensive with complex objects and more
objects.

•  Light from other objects (other than pure
reflection) is not modeled.
–  Still use the constant ambient light component.

•  Shadows often appear too sharp
•  Surfaces appear too glossy or smooth
•  Images take a long time to render, must

recalculate for each new view
•  Have to tweak illumination model constants to

get desired effect

