
Computer Graphics
Transparency and Shadows in OpenGL

Based on slides by Dianna Xu, Bryn Mawr College

Opacity and Transparency
•  Opaque surfaces permit no light to pass through
•  Transparent surfaces permit all light to pass
•  Translucent surfaces pass some light
 translucency = 1 – α

opaque surface α =1

Translucency Model
•  Surface s1 is translucent and only allows a

fraction t (transmittance) of the light reflected
from surface s2 (behind it) to pass through:

t r2

s1 s2

r1

i = (1 - t)r1 + t r2

t = transmittance of s1
r1 = reflected light from s1
r2 = reflected light from s2

t = 0 => i = r1 s1 is opaque
t = 1 => i = r2 => s1 is transparent

Blending Equation
•  Source: the color of the polygon going to cover the

pixel
•  Destination: the color of original pixel in the frame

buffer
•  Blending factor is the same for all color components

OpenGL Blending and Compositing

•  Must enable blending and pick source and
destination factors

 glEnable(GL_BLEND)
 glBlendFunc(source_factor,
 destination_factor)

•  Only certain factors supported
–  GL_ZERO, GL_ONE
–  GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
–  GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
–  See Redbook for complete list

Example

•  Suppose that we start with the opaque background
color (R0,G0,B0,1)
–  This color becomes the initial destination color

•  We now want to blend in a translucent polygon with
color (R1,G1,B1,α1)

•  Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA as
the source and destination blending factors
	

 α1 R1 +(1- α1) R0,, α1 G1 +(1- α1) G0 α1 B1 +(1- α1) B0

•  Note this formula is also correct if polygon is either
opaque or transparent

Writing Model
•  Use α component of RGBA (or RGBα) color to

store opacity
•  During rendering we can expand our writing

model to use RGBA values

Color Buffer

destination
component

blend

destination blending
 factor

source blending factor
 source
component

Order Dependency
•  Is this image correct?

– Probably not
– Polygons are rendered
in the order they pass
down the pipeline
– Blending functions
are order dependent

Translucency and HSR

•  Suppose that we have a group of polygons
some of which are opaque and some
translucent

•  How do we use hidden-surface removal?
•  Opaque polygons block all polygons behind

them and affect the depth buffer
•  Translucent polygons should not affect depth

buffer
–  Render with glDepthMask(GL_FALSE) which

makes depth buffer read-only
•  Sort polygons first to remove order

dependency

Changing Transmittance by
Viewing Angle

Applied to Lots of Small Polygons

Specular Highlights Reduce
Transmittance

Fog

•  Blend in distance-dependent color as each
polygon is processed.

•  Add a fog factor which is used much like
alpha, but is dependent on depth, and blends
between fog color and polygon color.

•  f is the fog factor, and is calculated by a
function on depth
–  Exponential
–  Gaussian
–  Linear (depth cueing)

OpenGL Fog

GLfloat fogc[4] = {…};
glEnable(GL_FOG);
glFogfv(GL_FOG_COLOR, fogc);
glFogf(GL_FOG_MODE, GL_EXP);
glFogf(GL_FOG_DENSITY, 0.5); //

Fog Functions

Fog or Haze

Foggy Chessmen

Transmittance Function: Varies
over Interior of Ellipsoid Shapes

Using a Denser Transmittance
Function (or 1)

Line Aliasing
•  Ideal raster line is one pixel wide
•  All line segments, other than vertical and

horizontal segments, partially cover pixels
•  Simple algorithms color only whole pixels
•  Lead to the “jaggies” or aliasing
•  Similar issue for polygons

Antialiasing

•  Can try to color a pixel by adding a fraction
of its color to the frame buffer
– Fraction depends on percentage of pixel

covered by fragment
– Fraction depends on whether there is

overlap

no overlap overlap

 Area Averaging

•  Use average area α1+α2-α1α2 as blending
factor

OpenGL Antialiasing

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

Shadows

•  Shadows are a consequence of light and
substance.

•  Shadows help depth perception and spatial
relationships.

•  Shadows can be hard- or soft-edged.
•  Various shadow algorithms:

– Finding silhouette edges and creating
shadow polygons

– Ray tracing
– Radiosity

Shadow Volumes for Non-Ray-
Traced Renderings

Silhouette or
Contour edges:
Normal flips
from frontward
to backward
facing polygons

Light
source

Edges of semi-infinite
shadow polygons

Clipping Shadow Volumes to View
Pyramid to Form Shadow Polygons

Point light source

Silhouette edge polygon

Intersection of semi-infinite
shadow volume with

view volume

Semi-infinite shadow volume
produced by polygon

View volume

Clipped Shadow Volume Polygons
Added to Scene

E.g., these polygons (exploded
view):

Shadows Add Depth and Spatial
Relationships

Shadows Help Show Contacts

Shadows Show Us Where Lights
Might Be

Shadows Accent Otherwise Like
Color Features

Sunbeams as Polyhedral Channels
and Light Density

Light and Shadow over the Edge of
Believability

Soft Shadows (Before Radiosity)

