Computer Graphics

2D and 3D Viewing Transformations

Based on slides by Dianna Xu, Bryn Mawr College
2D Viewing Transformation

- Converting 2D model coordinates to a physical display device
 - 2D coordinate world
 - 2D screen space
 - Allow for different device resolutions
Window: Portion of World Viewed

Window = area of interest within world

Assume window is rectangular

World coordinates are chosen at the convenience of the application or user
Viewing Transformation (World to NDC)

Window

Viewport

World Coordinates

Normalized Device Coordinates
NDC to Screen

Normalized Device Coordinates Screen Coordinates

(.45,.32) (0,0) (1279,0) (1,1) (0,1023) (1279,1023) (.83,.9) (575,327) (1061,921)
Range Mapping

- Given values in a range A, map them linearly into a (different) range of values B.
- Consider some arbitrary point a in A
- Find the image b of a in B
Solving for the Range Mapping

• Using simple proportions:

\[
\frac{b - B_{\text{min}}}{a - A_{\text{min}}} = \frac{B_{\text{max}} - B_{\text{min}}}{A_{\text{max}} - A_{\text{min}}}
\]

• Solving for \(b\):

\[
b = \frac{B_{\text{max}} - B_{\text{min}}}{A_{\text{max}} - A_{\text{min}}} (a - A_{\text{min}}) + B_{\text{min}}
\]

• In terms of transformations, the distance from \(a\) to \(A_{\text{min}}\) is scaled by the ratio of the two ranges \(B\) and \(A\):

\[
\left(\frac{B_{\text{max}} - B_{\text{min}}}{A_{\text{max}} - A_{\text{min}}}\right)
\]
then translated from the end \(B_{\text{min}}\) of \(B\).
The Window to Viewport Transformation

\[x_v = \frac{V_{x_{\text{max}}} - V_{x_{\text{min}}}}{W_{x_{\text{max}}} - W_{x_{\text{min}}}} \left(x_w - W_{x_{\text{min}}} \right) + V_{x_{\text{min}}} \]

\[y_v = \frac{V_{y_{\text{max}}} - V_{y_{\text{min}}}}{W_{y_{\text{max}}} - W_{y_{\text{min}}}} \left(y_w - W_{y_{\text{min}}} \right) + V_{y_{\text{min}}} \]
Different Window and Viewport Aspect Ratios

- If $\frac{a}{b} = \frac{c}{d}$ then map causes no distortion
- If $\frac{a}{b} \neq \frac{e}{f}$ then distortion occurs
- To avoid distortion, use $\min\left(\frac{e}{a}, \frac{f}{b}\right)$ as single scale factor in both x, y mapping
Mapping the Viewport Back into the Window

• Note that the window-to-viewport transformation can be inverted

\[
x_w = \frac{W_x \text{ max} - W_x \text{ min}}{V_x \text{ max} - V_x \text{ min}} \left(x_v - V_x \text{ min} \right) + W_x \text{ min}
\]

\[
y_w = \frac{W_y \text{ max} - W_y \text{ min}}{V_y \text{ max} - V_y \text{ min}} \left(y_v - V_y \text{ min} \right) + W_y \text{ min}
\]
3D Viewing Pipeline

Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device coordinates

2D SCREEN
OpenGL Pipeline

- Vertex (xyzw)
- Modelview Matrix
- Projection Matrix
- Viewport transformation
- NDC coords
- Perspective division
- Screen coords
- Clip coords
- Eye coords
The Camera Analogy

- **Modeling transformation**: Position the object you are photographing
- **Viewing transformation**: Position the viewing volume on the world/Setting up the tripod
- **Projection**: Lens/zooming
- **Viewport transformation**: Photograph
Classical Viewing

- When an architect draws a building
 - they know which sides they wish to display,
 - and thus where they should place the viewer
- Each classical view is determined by a specific relationship between the objects and the viewer.
Planar Geometric Projections

• Standard projections project onto a plane
• Projectors are lines that either
 – converge at a center of projection
 – are parallel
• Such projections preserve lines
 – but not necessarily angles
• Nonplanar projections are needed for applications such as map construction
3D Viewing Transformations

- **Parallel or Orthographic projection**
 - Eye at infinity
 - Need direction of projection
 - “Projectors” are parallel

- **Perspective or Central projection**
 - Eye at point \((x,y,z)\) in world coordinates
 - “Projectors” emanate from eye position
Focal Length/Field-of-View

- eye near object
- eye at infinity
Taxonomy of Planar Geometric Projections

- Parallel
 - Multiview
 - Orthographic
 - Axonometric
 - Isometric
 - Dimetric
 - Trimetric
- Perspective
 - 1 point
 - 2 point
 - 3 point
Parallel Projection of Cube

Notice how all parallel line families map into parallel lines in the projection.
Special Parallel Projections

• Orthographic
 – Projection plane is usually parallel to one principal face of the object.
 – Projectors are perpendicular to the projection plane

• Axonometric
 – Also known as the chinese perspective
 – Used in long scroll paintings
Orthographic Projection

Projectors are orthogonal to projection surface
Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views
- We often display three multiviews plus isometric

isometric (not multiview orthographic view)
Advantages and Disadvantages

• Preserves both distances and angles
 – Shapes preserved
 – Can be used for measurements
 • Building plans
 • Manuals

• Cannot see what object really looks like because many surfaces hidden from view
 – Often we add the isometric
Construction of Parallel Projection

View plane

View plane normal
(1, -1, -1)

Projector
Axonometry

- A drawing technique where the three axes are projected to non-orthographic axes in 2D
- Y usually remains vertical, z is skewed, x is either horizontal or also skewed
- No vanishing point
- Objects remain the same size regardless of distance
Axonometric Projections

• If we allow the projection plane to be at any angle (not just parallel to a face of the object), classify by how many angles of a corner of a projected cube are the same:

 - none: trimetric
 - two: dimetric
 - three: isometric
Isometric and Dimetric

- **Isometric**: axes have the same metric

 ![Isometric Diagram](image)

- **Dimetric**: one axis has a different metric

 ![Dimetric Diagram](image)
Types of Axonometric Projections

Dimetric

Trimetric

Isometric
Advantages and Disadvantages

• Lines are scaled *(foreshortened)* but can find scaling factors
• Lines preserved but angles are not
 – Projection of a circle in a plane not parallel to the projection plane is an ellipse
• Can see three principal faces of a box-like object
• Some optical illusions possible
 – Parallel lines appear to diverge
• Does not look real because far objects are scaled the same as near objects
• Used in CAD applications
Perspective Projection
Projectors converge at center of projection
Vanishing Points

- Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*).
- Drawing simple perspectives by hand uses these vanishing point(s).

![Diagram showing a cube with a vanishing point]
One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube
Two-Point Perspective

• On principal direction parallel to projection plane
• Two vanishing points for cube
Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube
One, Two and Three Points
One-Point Perspective Construction

View Plane

Projectors

Center of Projection
(0.7, 0.5, -4.0)

View Reference Point

View Plane Normal
(0.0, 0.0, 1.0)
1-Point Perspective Projection of Cube
2-point Perspective of a Cube
Varying the 2-Point Perspective
Center of Projection

- Variations achieved by moving the center of projections closer (a) or farther (c) and from the view plane.
Varying the 2-Point Perspective Center of Projection

- Variations achieved by moving the center of projection so as to show the top of the object (a) or the bottom of the object (c).
Varying the 2-Point Perspective View Plane Distance

- Effects achieved by varying the view plane distance. (a) has a large view plane distance, (c) a small view plane distance. The effect is the same as a scale change.
3-Point Perspective Projection

- Only difference from 2-point is that the projection plane intersects all three major axes.
Size

- All perspective views are characterized by diminution of size (the farther away, the smaller they are)
Advantages and Disadvantages

• Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminuation)
 – Looks realistic
• Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
• Angles preserved only in planes parallel to the projection plane
• More difficult to construct by hand than parallel projections (but not more difficult by computer)
Defining a Perspective Projection

• Define projection data and center of projection:
 – **View reference point**: a point of interest
 – **View plane normal**: a direction vector
 – **Center of projection**: a point defined relative to the view reference point, where the eye is
 – **View plane distance**: defines a distance along the view plane normal from the view reference point.
 – **View up vector**: The direction vector that will become “up” on the final image.
The View Up Vector

- Specify direction which will become vertical in the final image: **View Up**.
- Project **View Up** vector onto **view plane** (given by **view plane normal**)
Effect of View Up Vector
View Plane U - V Coordinate System

- Origin is the **view reference point** REF.
- U and V axes computed from **view up vector** and **view plane normal**.
- Used to specify the 2D coordinates of the window.
Specifying the Window

- Needed for window to viewport mapping
- Creates top, bottom, left, and right clipping limits.

Window (-5, -7, 5, 4)

Window (-6, -2, -1, 6)
Setting the View Plane Distance

- Distance from view reference point to view plane along view plane normal (NORM).
- Used to zoom in and out.
Setting the View Depth -- Front and Back Planes

• Forms front and back of **view volume**.
• Used for both perspective and parallel projections.
• Any order as long as **front < back**.

Front plane (0.4) View plane (1.7) Back plane (4.0)
3D Clipping and the View Volume

Graphic primitives are clipped to the view volume.

The contents of the view volume are projected onto the window.
3D Clipping uses the Front and Back Planes, too

- Front and back planes truncate the view volume pyramid.
The Perspective Projection View Volume

Voilà! The truncated pyramid view volume.
Window Changes Create Cropping Effects

Window need not be centered in UV coordinate system. Like cropping a photograph.
Cropping Example
Parallel Projection Clipping View Volume

- View Volume determined by the direction of projection and the window
Parallel Projection View Volume

- View Volume is now a parallelepiped.
The Synthetic Camera

- Translated via CP changes.
- Rotated via UP changes.
- Redirected via View Plane Normal changes (e.g. panning).
- Zoom via changes in View Distance
3D Viewing Pipeline

Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device coordinates

2D SCREEN
Transform World Coordinates to Eye Coordinates

Approximate steps:
• Put eye (center of projection) at (0, 0, 0).
• Make X point to right.
• Make Y point up.
• Make Z point forward (away from eye in depth).
• (This is now a left-handed coordinate system!)
World to Eye Transformation

START

View direction

Eye = center of projection
World to Eye Transformation
Translate eye to \((0, 0, 0)\)
World to Eye Transformation
Align *view direction* with +Z
World to Eye Transformation
Align VUP direction with +Y
World to Eye Transformation
Scale to LH coordinate system
3D Viewing Pipeline

3D WORLD

Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device coordinates

2D SCREEN

"Standard View Volume"
On to the Clipping Transformation

• It remains to do the transformations that put these coordinates into the clipping coordinate system
• We have to shear it to get it upright
Notice that the view pyramid is not a right pyramid. We must make it so with the shear transformation.
Scaling to Standard View Volume

$$Z_C = \text{VIEWD-PR}_N$$

$$Z_C = \text{BACK-PR}_N$$

$$Z_C = \text{FRONT-PR}_N$$

$$\begin{bmatrix}
\frac{U_{MAX} - U_{MIN}}{2}
\frac{V_{MAX} - V_{MIN}}{2}
\end{bmatrix}
\begin{bmatrix}
\text{VIEWD - PR}_N
1
\end{bmatrix}$$
The Standard View Volume for Perspective Case

plane $Z_C = Y_C$

plane $Z_C = X_C$

back: $Z_C = 1$

$Z_C =$\text{FRONT-PR}_N / \text{BACK-PR}_N

$(-1, 1, 1)^T$

$(1, 1, 1)^T$

$(1, -1, 1)^T$
Scaling to Standard View
Volume: Parallel

front

Y_{C}\quad \quad \quad Z_{C}\quad \quad \quad X_{C}

window

FRONT-VIEWD \quad BACK-VIEWD
The Standard View Volume for Parallel: The Unit Cube $[0, 1]^3$
3D Viewing Pipeline

- Modeling transformation
- Viewing transformation
- Clipping transformation
- Clip
- Projection (homogeneous division)
- Image transformation
- NDC to physical device coordinates

“Standard View Volume”

3D WORLD

3D World

3D eye

3D clip

3D NDC

3D clip

3D NDC

2D SCREEN
3D Viewing Pipeline

- **Modeling transformation**
- **Viewing transformation**
- **Clipping transformation**
- **Clip**
- **Projection** (homogeneous division)
- **Image transformation**
- **NDC to physical device coordinates**

3D WORLD

- 3D World
- 3D eye
- 3D clip
- 3D NDC

2D SCREEN

“Standard View Volume”
Clipping

- Points
- Lines
- Polygons
View Volume Clipping Limits

<table>
<thead>
<tr>
<th>Above</th>
<th>y > 1</th>
<th>y > w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below</td>
<td>y < 0</td>
<td>y < -w</td>
</tr>
<tr>
<td>Right</td>
<td>x > 1</td>
<td>x > w</td>
</tr>
<tr>
<td>Left</td>
<td>x < 0</td>
<td>x < -w</td>
</tr>
<tr>
<td>Behind (yon)</td>
<td>z > 1</td>
<td>z > w</td>
</tr>
<tr>
<td>In Front (hither)</td>
<td>z < 0</td>
<td>z < 0</td>
</tr>
</tbody>
</table>

A point \((x, y, z)\) is in the view volume if and only if it lies inside these 6 planes.
Clipping Lines

• Extend 2-D case to 3-D planes.
• Now have 6-bit code rather than 4-bit (above, below, left, right, in-front, behind).
• Only additional work is to find intersection of a line with a clipping plane.
• We might as well do the general case of (non-degenerate) line / plane intersection.
Intersection of Line with Arbitrary Plane

Plane $Ax + By + Cz + D = 0$

normal = (a, b, c)

$=(A, B, C)/|(A, B, C)|$

$Q = P0 + q (P1 - P0)$ from parametric form: want Q, thus need q

$q = B0 / (B0 - B1)$ where

$B0 = P0 \cdot (a, b, c)$ and $B1 = P1 \cdot (a, b, c)$
Clipping Polygons

- Clip polygons for visible surface rendering.
- Preserve polygon properties (for rasterization).

Z_c coordinate is 0
Clipping to One Boundary

- Consider each polygon edge in turn \([O(n)]\)
- Four cases:
 - ENTER:
 - STAY IN:
 - LEAVE:
 - STAY OUT:

Output \(P, Q\)
Output \(R\)
Output \(S\)
(no output)

Therefore clipped polygon is \(P, Q, R, S\).
Clipping Example

- Works for more complex shapes.

<table>
<thead>
<tr>
<th>Input</th>
<th>Case</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>start</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>stay in</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>leave</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>stay out</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>enter</td>
<td>B, 5</td>
</tr>
<tr>
<td>6</td>
<td>leave</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>stay out</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>enter</td>
<td>D, 1</td>
</tr>
</tbody>
</table>

Boundary X

```
2 A B 5 C D 1
```
Clipping Against Multiple Boundaries

<table>
<thead>
<tr>
<th>Input</th>
<th>Case</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>start</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>stay out</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>enter</td>
<td>Q, B</td>
</tr>
<tr>
<td>5</td>
<td>stay in</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>stay in</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>stay in</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>stay in</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>leave</td>
<td>P</td>
</tr>
</tbody>
</table>

Boundary X

Boundary Y
3D Viewing Pipeline

Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device coordinates

2D SCREEN

“Standard View Volume”
Normalize Homogeneous Coordinates (Perspective Only)

\[x' = \frac{x}{w} \]
\[y' = \frac{y}{w} \]
\[z' = \frac{z}{w} \]

provided \(w \neq 0 \)

Returns \(x' \) and \(y' \) in range \([-1, 1]\)
\(z' \) in range \([0, 1]\)
3D Window to 3D Viewport in (3D NDC)

- **Parallel:**
 - Standard view volume is unit cube, so nothing to do!

 \[
 X = x_c \\
 Y = y_c \\
 Z = z_c
 \]

- **Perspective:**
 - Must translate view volume by +1 and scale it by 0.5:

 \[
 X = (x_c + 1) / 2 \\
 Y = (y_c + 1) / 2 \\
 Z = z_c
 \]
3D Viewing Pipeline

- Modeling transformation
- Viewing transformation
- Clipping transformation
- Clip
- Projection (homogeneous division)
- Image transformation
- NDC to physical device coordinates

"Standard View Volume"
Image Transformations

- Scene transformed into a unit cube \([0,1]^3\).
- We can position this unit cube containing the scene anywhere on the display.
- Obscuration in a layered viewport (e.g. Windows) system.
Viewport Volumes

Screen Appearance (layers displayed back to front)
3D Viewing Pipeline

Modeling transformation → Viewing transformation → Clipping transformation → Clip → Projection (homogeneous division) → Image transformation → NDC to physical device coordinates → 2D SCREEN

“Standard View Volume”