Computer Graphics

Procedural Geometry Using Fractals

Procedural Shape Modeling

Simple procedure

Fractal Plants (L-Systems)

Uses "production rules" applied to a seed "axiom"

• Example:

Axiom: B

Rule: $B\rightarrow A[-B][+B]$

L-system Example

L-systems example: Koch snowflake

L-systems example: Serpinski Triangle

Procedural Trees and Bushes

- Define a branch structure
- Define a leaf

Procedural Trees from PovTree

http://propro.ru/go/Wshop/povtree/tutorial.html

Interactive Fractal Tree Design

Algorithmic Plants

 Excellent web resource with a free online book: http://algorithmicbotany.org/

 Numerous papers by Przemyslaw Prusinkiewicz and colleagues

Procedural Terrain Modeling

- Has a gross structrure
- Also with some randomness
- Want a height map z=h(x,y)

F.K. Musgrave

Want a function y=h(x)

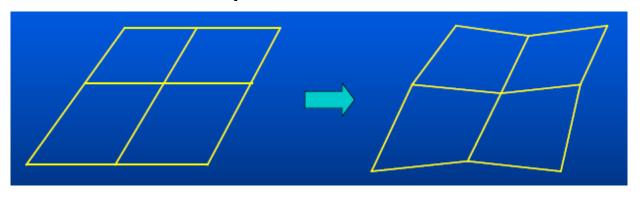
Start with a single horizontal line segment.
Repeat for a sufficiently large number of times
{
Find the midpoint of the line segment.

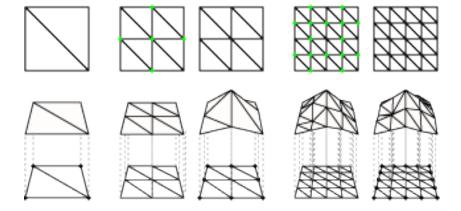
Displace the midpoint in Y by a random amount.

Recursively apply this operation for the resulting two segments with reduced range for the random numbers (by a factor 0<f<1).

Want a function y=h(x)

Results with different f

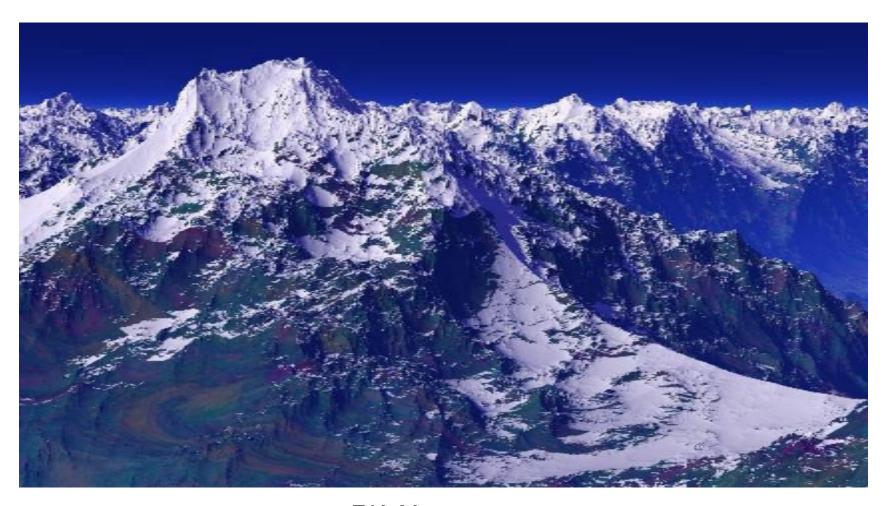



Start with a single horizontal line segment.

Repeat for a sufficiently large number of times

{
 Find the midpoint of the line segment.
 Displace the midpoint in Y by a random amount.
 Recursively apply this operation for the resulting two segments with reduced range for the random numbers (by a factor 0<f<1).
}

Subdivide and Displace



F.K. Musgrave

Texture mapping

F.K. Musgrave

Adding water

Use an elevation threshold (z < z_water)

F.K. Musgrave

