Computer Graphics

Geometry

Based on Slides by Dianna Xu, Bryn Mawr College

Coordinate-Free Geometry

- Most geometric results are independent of the coordinate system
- The product of a matrix and a vector can have many meanings
 - A change of coordinate system
 - A transformation of space
 - A projection
- Basics of affine geometry
 - Scalars, vectors and points

- Members of sets which can be combined by two operations
 - Addition
 - Multiplication
 - Obeying some fundamental axioms (associativity, commutivity, inverses)
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector

v

- Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

-12

 αv

Conventions

- Points will be upper-case Roman letters, e.g. P, Q and R
- Vectors will be lower-case roman letters, e.g. u, v and w
- Scalars will be represented as
 - lower case Greek letters, e.g. α , β and γ
 - And a, b and c in programs

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $\mathcal{U} = \alpha \mathcal{V}$
 - Vector-vector addition w = u + v
- Vector space expressions

u = v + 2w - 3r

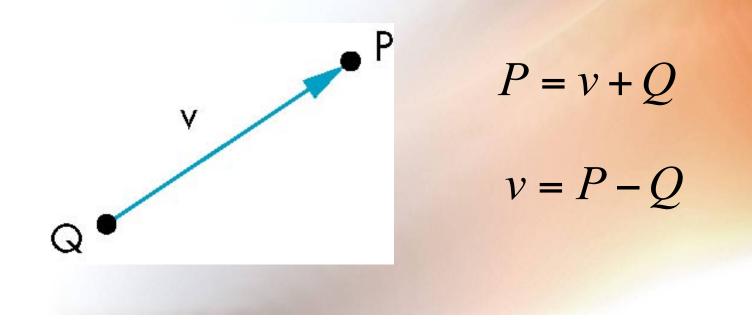
Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition



Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define

$$-1 \bullet P = P$$

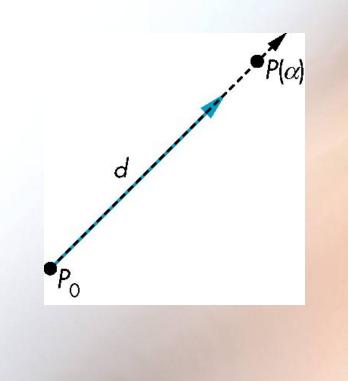
 $- \vec{0} \bullet P = P$ (zero vector)

Lines

Consider all points of the form

$$-P(\alpha) = P_0 + \alpha d$$

– Set of all points that pass through P_0 in the direction of the vector d



Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - **Explicit**: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1 - \alpha) x_1$$
$$y(\alpha) = \alpha y_0 + (1 - \alpha) y_1$$

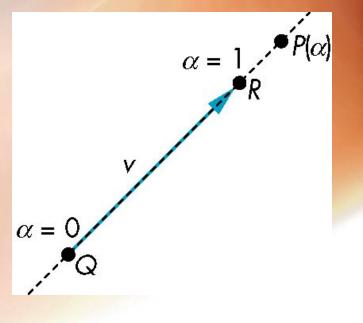
Line Segments and Affine Combinations

 If α >= 0, then P(α) is the vector leaving P₀ in the direction d

If we use two points to define v, then

$$P(\alpha) = Q + \alpha(R - Q) = Q + \alpha v = \alpha R + (1 - \alpha)Q$$

For 0<=α<=1 we get all the points on the *line segment* joining R and Q



Affine Combinations

Consider the "sum"

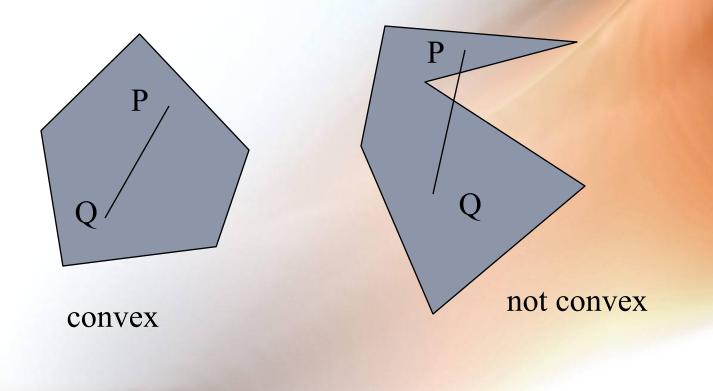
$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

 $\forall \alpha_1 + \alpha_2 + \dots + \alpha_n = 1$

- We have the *affine combination* of the points P₁,P₂,....P_n
- If, in addition, α_i>=0, we have the convex combination of P₁, P₂,....P_n

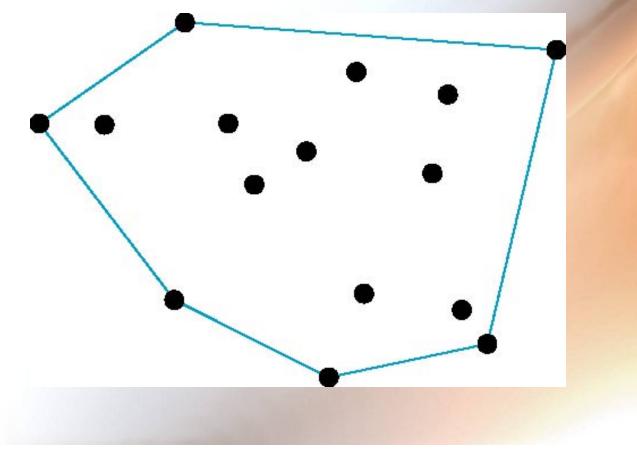
Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object



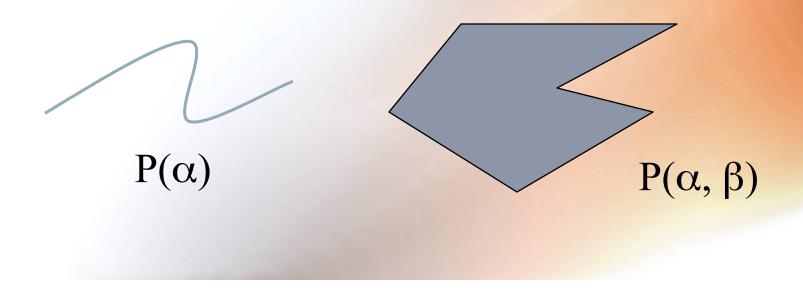
Convex Hull

- Smallest convex object containing P₁, P₂,P_n
- Formed by "shrink wrapping" points



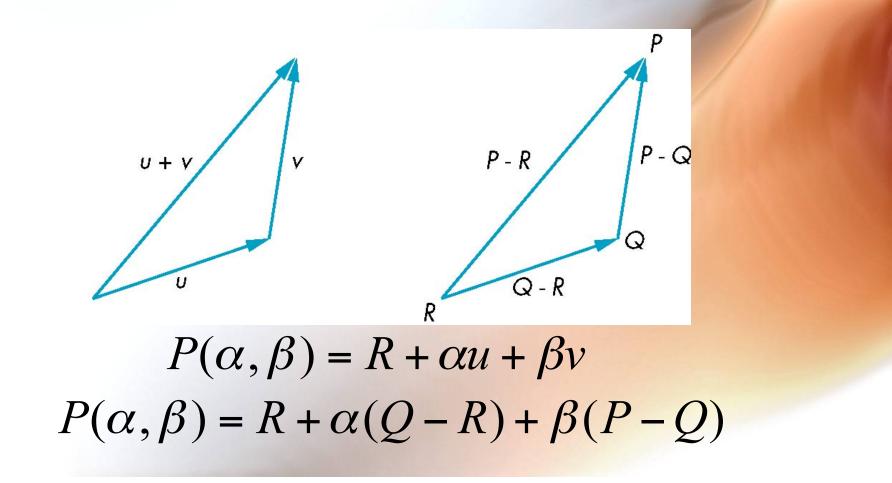
Curves and Surfaces

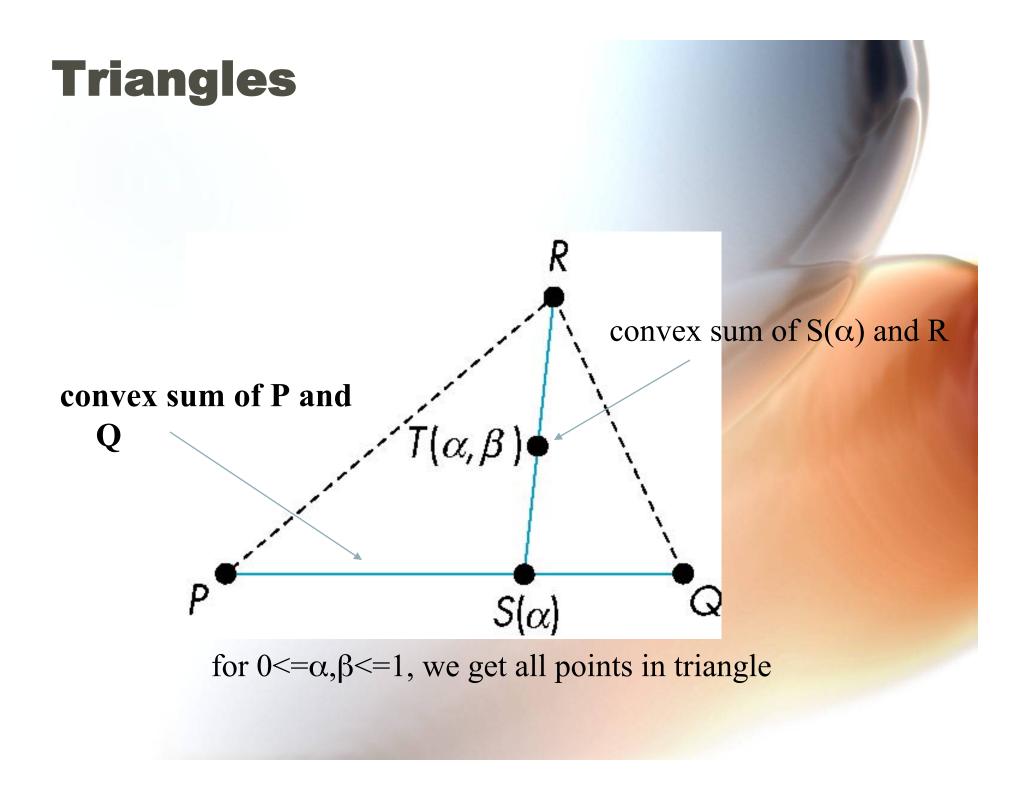
- Curves are one parameter entities of the form P(α) where the function is nonlinear
- Surfaces are formed from two-parameter functions P(α, β)
 - Linear functions give planes and polygons



Planes

 A plane be determined by a point and two vectors or by three points





Euclidean Geometry

- Euclidean geometry is an extension of affine geometry with one additional operation
- Inner product (dot product)
 - Maps two vectors to a scalar

$$\vec{u} \bullet \vec{v} = \sum_{i=0}^{d-1} u_i v_i$$

• Length $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}} \Leftrightarrow \vec{v} \cdot \vec{v} = |\vec{v}|^2$

Normalization

- A vector having length of exactly 1 is called the *unit vector*.
- A vector of non-zero length can be normalized by dividing its own length

$$\hat{v} = \frac{\vec{v}}{\left|\vec{v}\right|}$$

Distance btw two points

dist(P,Q) = P - Q

The Dot Product

$$\vec{u} \bullet \vec{v} = u_0 v_0 + u_1 v_1 + \dots + u_{d-1} v_{d-1} =$$

 The dot product of two vectors measures the difference between the directions in which the two vectors point

d-1

 $\mathcal{U}_{:}$

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Geometric Significance of the Dot Product

Angle btw two vectors

$$ang(\vec{u},\vec{v}) = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right) = \cos^{-1}\left(\hat{v} \cdot \hat{u}\right)$$

 \vec{u}

- If two vectors are perpendicular, their dot product is 0
- If two vectors point in the same half plane, their dot product is non-negative

The Cross Product

 The cross product of two vectors
 returns a new vector perpendicular to both

$$\vec{u} \times \vec{v} = \langle u_y v_z - u_z v_y, u_z v_x - u_x v_z, u_x v_y - u_y v_x \rangle$$

 $\vec{u} \times \vec{v}$

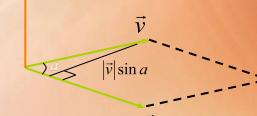
Also given by the pseudo-determinant

$$\vec{u} \times \vec{v} = \begin{bmatrix} i & j & k \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix} = i(u_y v_z - u_z v_y) - j(u_x v_z - u_z v_x) + k(u_x v_y - u_y v_x)$$

Geometric Significance of the Cross Product

 The length of the cross product is the signed area of the parallelogram formed by the two vectors crossed

$$\left|\vec{u} \times \vec{v}\right| = \left|\vec{u}\right| \left|\vec{v}\right| \sin a$$



 $\vec{u} \times \vec{v}$

 $\vec{u} \times \vec{v}$

U

 The direction of the cross product is given by the right hand rule

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha, \beta) = P_0 + \alpha u + \beta v$ we know we can use the cross product to find $n = u \times v$ and the equivalent form

$$(P(\alpha,\beta) - P_0) \bullet n = 0$$
P
P