Computer Graphics

3D graphics, raster and colors

CS312 – Fall 2010
3D Graphics

Object description → 3D graphics model → Visualization

2D projection that simulates the appearance of a real object
Graphics System

- Applications program
- Geometric processing
- Model databases
- Frame Buffer
- Video controller
- Display hardware
- Display
- Interaction
Elements of Image Formation

- Objects
- Viewer
- Light source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, the viewer, and the light source(s)
Ray Tracing

One way to form an image is to follow rays of light from a point source and determine which rays enter the lens of the camera.
Luminance and Color Images

• Luminance Image
 – Monochromatic
 – Values are gray levels
 – Analogous to working with black and white film or television

• Color Image
 – Has perceptual attributes of hue, saturation, and lightness
 – Do we have to match every frequency in visible spectrum?
Three-Color Theory

• Human visual system has two types of sensors
 – Rods: monochromatic, night vision
 – Cones
 • Color sensitive
 • Three types of cones
 • Only three values (the *tristimulus* values) are sent to the brain

• Need only match these three values
 – Need only three *primary* colors
Shadow Mask CRT

- Blue gun
- Green gun
- Red gun

Triad
Green, Red, Blue

Shadow mask
Additive and Subtractive Color

• Additive color
 – Form a color by adding amounts of three primaries
 • CRTs, projection systems, positive film
 – Primaries are Red (R), Green (G), Blue (B)

• Subtractive color
 – Form a color by filtering white light with cyan (C), Magenta (M), and Yellow (Y) filters
 • Light-material interactions
 • Printing
 • Negative film
Use trigonometry to find projection of point at \((x,y,z)\)

\[x_p = -x/z/d \quad y_p = -y/z/d \quad z_p = d \]

These are equations of simple perspective
Synthetic Camera Model

- projector
- image plane
- projection of p
- center of projection
Practical Approach

• Process objects one at a time in the order they are generated by the application
 – Can consider only local lighting

• Pipeline architecture

 application program

 Vertices → Transformer → Clipper → Projector → Rasterizer → Pixels

 display

• All steps can be implemented in hardware on the graphics card
The Programmer’s Interface

• Programmer sees the graphics system through a software interface: the Application Programmer Interface (API)
Following the Pipeline: Transformations

• Much of the work in the pipeline is in converting object representations from one coordinate system to another
 – World coordinates
 – Camera coordinates
 – Screen coordinates

• Every change of coordinates is equivalent to a matrix transformation
Clipping

- Objects that are not within the viewing volume are said to be clipped out of the scene.
Projection

- Must carry out the process that combines the 3D viewer with the 3D objects to produce the 2D image
 - Perspective projections: all projectors meet at the center of projection
 - Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection

Vertices → Transformer → Clipper → Projector → Rasterizer → Pixels
Rasterization

• If an object is visible in the image, the appropriate pixels in the frame buffer must be assigned colors
 – Vertices assembled into objects
 – Effects of lights and materials must be determined
 – Polygons filled with interior colors/shades
 – Must have also determined which objects are in front (hidden surface removal)
Rasterization

The process of transforming geometric shapes into discrete raster grids.
Raster Graphics

- **Spatial resolution** = elements × scan lines
e.g. 5 × 5 (below)
- **Intensity or color resolution** = 2^{Depth}

Here, each pixel can have any of $2^{\text{Depth}} = 8$ possible values.
Color

\[C = rR + gG + bB \]

- Minimum number of levels for just noticeable intensity difference is 100, or about 7 bits.
- Thus, use at least 8 bits per color (R, G, B) (10-24 for photographic quality)
Frame Buffer Architectures

- The raster image is stored in a “frame buffer” memory.
- The frame buffer is built from one or more “bit planes” --two-dimensional arrays of bits.
- This memory is usually peripheral to the host on a video card.
Black and White Frame Buffer with 1 Bit Plane
Frame Buffer Configurations

- Can drive a digital-to-analog converter directly, or use these values as an index into a “lookup table” (“color map”, etc.)

N: number of bit planes

$\Rightarrow 2^N$ intensity levels
Grey Scale Frame Buffer with \(N \) Bit Planes

- \(N \) bits
- \(2^N \) levels
- 3 bit DAC
- 101 (for example)
Grey Scale Frame Buffer with Look-Up Table

Look-up value stored in address 101 (=5), e.g. 110101 (53 from range 0-63)
8 Color Frame Buffer (3 Bit Planes)
3 Bit Planes = 8 Colors

0 0 0 == BLACK
0 1 0 == GREEN
0 0 1 == BLUE
1 1 0 == YELLOW
0 1 1 == CYAN
1 0 1 == MAGENTA
1 1 1 == WHITE
Color Frame Buffer with 3N Bit Planes
CFB with 3N Bit Planes and LUT
Newer Architectures

- Additional memory planes per pixel:
 - Z (depth)
 - Alpha blending
 - Stencils (to select areas for operations)
- Separate texture memory
Raster Graphics “Primitives”

- Points
- Lines
- Rectangles
- Circles or Conics
- Disks
- Polygons
- Characters or Special symbols
- Bit maps, sprites, or patterns