Low-Level Programming

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College

aradigm

(CS8246 Programming

Introduction

* Previous chapters have described C’s high-level,
machine-independent features.
* However, some kinds of programs need to perform
operations at the bit level:
o Systems programs (including compilers and
operating systems)
o Encryption programs
o Graphics programs
o Programs for which fast execution and/or efficient
use of space is critical
* Bits are indexed from 0 starting from the right

Bitwise Operators

 Bitwise operators operate on integer data at the bit
level.
o shift
<< left shift
>> right shift
o bitwise complement ~
o bitwise and &
o exclusive or *

o inclusive or |

Integer Promotion

Ifan int can represent all values of the original
type, the value is converted to an int ; otherwise,
it is converted to an unsigned int. These are
called the integer promotions. All other types are
unchanged by the integer promotions.

Bitwise Shift Operators

o << left shift >> right shift
o shift the bits in an integer to the left or right
o operands may be of any integer type (including
char).
o the result has the type of the left operand after
promotion.

Bitwise Shift Operators

 i<<]
o shifts the bits in i to the left by j places
o for each bit that is “shifted off” the left end of 1, a 0 bit
enters at the right.
e i>>]
o shifts the bits in i to the right by j places

o if 1 is of an unsigned type or if the value of 1 is
nonnegative, Os are added at the left as needed.

o if 1 is negative, the result is implementation-defined.
* Operands may be of any integer type, but use
unsigned for portability

Bitwise Shift Operators

unsigned short i, j;
i = glkhy .

/* 1 'is now 13 (binary 0000000000001101) */
§ =i << 2;

/* j is now 52 (binary 0000000000110100) */
3 =i > 2;

/* j is now 3 (binary 0000000000000011) */

To modify a variable by shifting its bits, use the
compound assignment operators <<= and >>=:
i=13;

/* i is now 13 (binary 0000000000001101) */
i <= 2;

/* 1 is now 52 (binary 0000000000110100) */
i >>= 2;

/* i is now 13 (binary 0000000000001101) */

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

There are four additional bitwise operators:

~ bitwise complement : unary

& bitwise and : binary

~ Dbitwise exclusive or : binary

| bitwise inclusive or : binary

The ~, &, ~, and | operators perform Boolean
operations on all bits in their operands.

The ~ operator produces 0 whenever both
operands have a 1 bit, whereas | produces 1.

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

Examples of the ~, &, *, and | operators:
unsigned short i, j, k;

i=21;

/* i is now 21 (binary 0000000000010101) */
j = 56;

/* j is now 56 (binary 0000000000111000) */
k = ~i;

/* k is now 65514 (binary 1111111111101010) */
k=1 & j;

/* k is now 16 (binary 0000000000010000) */
k=1i"73;

/* k is now 45 (binary 0000000000101101) */
k=11 3;

/* k is now 61 (binary 0000000000111101) */

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

The compound assignment operators:
&=, =,and |=:
i=21;

/* i is now 21 (binary 0000000000010101) */
j = 56;

/* j is now 56 (binary 0000000000111000) */
ie= 3;
/* i is now 16 (binary 0000000000010000) */
A §;
/* i is now 40 (binary 0000000000101000) *

~

il=3;
/* i is now 56 (binary 0000000000111000) */

Precedence

The bitwise shift operators have lower precedence than the
arithmetic operators, which can cause surprises:
1<<2+1meansi<< (2+1),not (1<<2)+1
Each of the ~, &, ~, and | operators has a different
precedence:
Highest: ~

&
Lowest: |
Examples:
i&~j | k means (i& (~3)) |k
i~j &~k means i "~ (J & (~k))
Using parentheses helps avoid confusion.

Machine Dependency

The result of bitwise operators is often machine
dependent, that is, it depends on the size of
integers on the local machine.
The ~ operator can be used to help make low-level
programs more portable.

o An integer whose bits are all 1: ~0

o An integer whose bits are all 1 except for the last
five: ~Ox1f

Using the Bitwise Operators to
Access Bits

* The bitwise operators can be used to extract or
modify data stored in a small number of bits.
» Common single-bit operations:
o Setting a bit
o Clearing a bit
o Testing a bit
* Assumptions:
o iisa 16-bitunsigned short variable.

o The leftmost—or most significant—bit is numbered
15 and the least significant is numbered 0.

Using the Bitwise Operators to
Access Bits

* Setting a bit.

i = 0x0000;
/* i is now 0000000000000000 */
i |= 0x0010;

/* i is now 0000000000010000 */

* If the position of the bit is stored in the variable j,

a shift operator can be used to create the mask:
i|l=1 << 3; /* sets bit j */

* The constant used to set a bit is known as a mask.
* Example:

o If j has the value 3, then 1 << j is 0x0008.

Using the Bitwise Operators to

Access Bits
Clearing a bit.
i = 0x00ff;
/* i is now 0000000011111111 */
i &= ~0x0010;
/* i is now 0000000011101111 */
* A statement that clears a bit whose position is
stored in a variable:
is= ~(1 << 3); /* clears bit j */

Using the Bitwise Operators to
Access Bits

* Testing a bit.
* An if statement that tests whether bit 4 of i is set:

if (i & 0x0010) .. /* tests bit 4 */

* A statement that tests whether bit 7 is set:

if (4 & 1 << 3) . /* tests bit j */

enum and Bit Masks

* Suppose that bits 0, 1, and 2 of a number correspond to the
colors blue, green, and red, respectively.
* Names that represent the three bit positions:
o enum{BLUE = 1, GREEN = 2, RED = 4};
« Examples of setting, clearing, and testing the BLUE bit:
o i |= BLUE; — sets the BLUE bit
o i &= ~BLUE; — clears the BLUE bit
o if (i & BLUE) — tests the BLUE bit
« It’s also easy to set, clear, or test several bits at time:
o i |= BLUE|GREEN - sets the BLUE and GREEN bits
o i &= ~(BLUE|GREEN) - clears BLUE and GREEN
o if (i&(BLUE|GREEN)) - tests BLUE and GREEN

* The if statement tests whether either the BLUE bit or the GREEN bit is set.

Bit Fields

* A group of several consecutive bits is a bit-field.
* Common bit-field operations:

o Modifying a bit-field

o Retrieving a bit-field

Bit Fields

* Modifying a bit-field
o A bitwise and (to clear the bit-field)
o A bitwise or (to store new bits in the bit-field)
o Example: stores 101 in bits 4-6
i =1 & ~0x0070 | 0x0050;
o The & clears bits 4-6 and the | sets bits 4 and 6
o {r’ust using | will not always work, as it doesn’ t clear bit

o Assume that j contains the value to be stored in bits
4-6 of i. To store j into position 4-6 of i:

i= (i & ~0x0070) | (J << 4);

Bit Fields

* Retrieving a bit-field
o Fetching a bit-field at the right end of a number (in
the least significant bits)
« Example: retrieve bits 0-2 of 1
3 =i & 0x0007;
o What if the bit-field isn’t at the right end of 1?
« Example: retrieve bits 4-6 of 1
o First shift the bit-field to the end
o Then extracting the field using the & operator:
j = (1 > 4) & 0x0007;

Program: XOR Encryption

* Encrypt data is to exclusive-or (XOR) each character
with a secret key.
* Suppose that the key is the & character.
* XORing this key with the character z yields the \
character:
00100110 (ASCII code for &)
XOR 01111010 (ASCII code for z)
01011100 (ASCII code for \)
* Decrypting a message is done by applying the same
algorithm:
00100110 (ASCII code for &)

XOR 01011100 (ASCII code for \)
01111010 (ASCII code for z)

Program: XOR Encryption

* A sample file named msg:

Trust not him with your secrets, who, when left
alone in your room, turns over your papers.
--Johann Kaspar Lavater (1741-1801)

* A command that encrypts msg, saving the encrypted
message in newmsg:
Xor <msg >newmsg

* Contents of newmsg:
rTSUR HIR NOK QORN _IST UCETCRU, ONI, ONCH JCGR
GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU.

--1INGHH mGUVGT jGPGRCT (1741-1801)

* A command that recovers the original message and
displays it on the screen:
xor <newmsg

Program: XOR Encryption

* The xor . c program won’ t change some
characters, including digits.

* XORing these characters with & would produce
invisible control characters, which could cause
problems with some operating systems.

* The program checks whether both the original
character and the new (encrypted) character are
printing characters.

* Ifnot, the program will write the original character
instead of the new character.

Xor.c
/* Performs XOR encryption */

#include <ctype.h>
#include <stdio.h>

#define KEY '&'

int main(void)
{

int orig_char, new_char;

while ((orig char = getchar()) != EOF) {
new_char = orig_char " KEY;
if (isprint(orig char) && isprint(new_char))
putchar (new_char) ;
else
putchar (orig_char) ;

return 0;

Bit-Fields in Structures

* C allows structure declarations whose members are
bit-fields.

» DOS allocates only 16 bits for a date, with 5 bits
for the day, 4 bits for the month, and 7 bits for the
year:

struct file date { struct file date fd;
unsigned int day: 5;
unsigned int month: 4; fd.day = 28;

unsigned int year: 7; fd.month = 12;
} fd.year = 8; /* 1988 */

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-Fields and Memory

* Bit Fields do not have addresses
o scanf ("%d", &fd.day); /*wrong*/

* How bit fields are stored is highly machine and
implementation dependent. The example in the
previous slide assumes 16-bit units.

* When bit fields do not fit a storage unit precisely,
what happens is compiler dependent.

Big-endian and Little-endian

¢ When a data item consists of more than one byte, there
are two logical ways to store it in memory (the order of
storing bytes):
o Big-endian: Bytes are stored in “natural” order (the
leftmost byte comes first).
o Little-endian: Bytes are stored in reverse order (the
leftmost byte comes last).
* x86 processors use little-endian order.
* We don’t normally need to worry about byte ordering.
« However, programs that deal with memory at a low
level must be aware of the order in which bytes are
stored.

Big-endian and Little-endian

* A way to determine endianness of your machine

#include <stdio.h>
int main()
{

unsigned int i = 1;

char *c = (char¥*)é&i;
if (*c)

printf("Little endian");
else

printf ("Big endian");
getchar() ;
return 0;

