
1	

Low-Level Programming

Based on slides from K. N. King and Dianna Xu

Bryn Mawr College
CS246 Programming Paradigm

Introduction
•  Previous chapters have described C’s high-level,

machine-independent features.
•  However, some kinds of programs need to perform

operations at the bit level:
o Systems programs (including compilers and

operating systems)
o Encryption programs
o Graphics programs
o Programs for which fast execution and/or efficient

use of space is critical
•  Bits are indexed from 0 starting from the right

Bitwise Operators
•  Bitwise operators operate on integer data at the bit

level.
o  shift

 << left shift
 >> right shift
o bitwise complement ~
o bitwise and &
o exclusive or ^
o  inclusive or |

Integer Promotion
•  If an int can represent all values of the original

type, the value is converted to an int ; otherwise,
it is converted to an unsigned int. These are
called the integer promotions. All other types are
unchanged by the integer promotions.

Bitwise Shift Operators
•  << left shift >> right shift

o  shift the bits in an integer to the left or right
o operands may be of any integer type (including
char).

o  the result has the type of the left operand after
promotion.

Bitwise Shift Operators
•  i << j

o  shifts the bits in i to the left by j places
o  for each bit that is “shifted off” the left end of i, a 0 bit

enters at the right.
•  i >> j

o  shifts the bits in i to the right by j places
o  if i is of an unsigned type or if the value of i is

nonnegative, 0s are added at the left as needed.
o  if i is negative, the result is implementation-defined.

•  Operands may be of any integer type, but use
unsigned for portability

2	

Bitwise Shift Operators
 unsigned short i, j;

 i = 13;
 /* i is now 13 (binary 0000000000001101) */

 j = i << 2;
 /* j is now 52 (binary 0000000000110100) */

 j = i >> 2;
 /* j is now 3 (binary 0000000000000011) */

•  To modify a variable by shifting its bits, use the
compound assignment operators <<= and >>=:

 i = 13;
 /* i is now 13 (binary 0000000000001101) */

 i <<= 2;
 /* i is now 52 (binary 0000000000110100) */

 i >>= 2;
 /* i is now 13 (binary 0000000000001101) */

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  There are four additional bitwise operators:
 ~ bitwise complement : unary
 & bitwise and : binary
 ^ bitwise exclusive or : binary
 | bitwise inclusive or : binary
•  The ~, &, ^, and | operators perform Boolean

operations on all bits in their operands.
•  The ^ operator produces 0 whenever both

operands have a 1 bit, whereas | produces 1.

•  Examples of the ~, &, ^, and | operators:
 unsigned short i, j, k;

 i = 21;
 /* i is now 21 (binary 0000000000010101) */

 j = 56;
 /* j is now 56 (binary 0000000000111000) */

 k = ~i;
 /* k is now 65514 (binary 1111111111101010) */

 k = i & j;
 /* k is now 16 (binary 0000000000010000) */

 k = i ^ j;
 /* k is now 45 (binary 0000000000101101) */

 k = i | j;
 /* k is now 61 (binary 0000000000111101) */

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  The compound assignment operators:
&=, ^=, and |= :

 i = 21;
 /* i is now 21 (binary 0000000000010101) */

 j = 56;
 /* j is now 56 (binary 0000000000111000) */

 i &= j;
 /* i is now 16 (binary 0000000000010000) */

 i ^= j;
 /* i is now 40 (binary 0000000000101000) */

 i |= j;
 /* i is now 56 (binary 0000000000111000) */

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

Precedence
•  The bitwise shift operators have lower precedence than the

arithmetic operators, which can cause surprises:
 i << 2 + 1 means i << (2 + 1), not (i << 2) + 1
•  Each of the ~, &, ^, and | operators has a different

precedence:
 Highest: ~
 &
 ^
 Lowest: |

•  Examples:
 i & ~j | k means (i & (~j)) | k
 i ^ j & ~k means i ^ (j & (~k))
•  Using parentheses helps avoid confusion.

Machine Dependency

•  The result of bitwise operators is often machine
dependent, that is, it depends on the size of
integers on the local machine.

•  The ~ operator can be used to help make low-level
programs more portable.
o An integer whose bits are all 1: ~0
o An integer whose bits are all 1 except for the last

five: ~0x1f

3	

Using the Bitwise Operators to
Access Bits

•  The bitwise operators can be used to extract or
modify data stored in a small number of bits.

•  Common single-bit operations:
o Setting a bit
o Clearing a bit
o Testing a bit

•  Assumptions:
o i is a 16-bit unsigned short variable.
o The leftmost—or most significant—bit is numbered

15 and the least significant is numbered 0.

Using the Bitwise Operators to
Access Bits

•  Setting a bit.
 i = 0x0000;
 /* i is now 0000000000000000 */

 i |= 0x0010;
 /* i is now 0000000000010000 */

•  If the position of the bit is stored in the variable j,
a shift operator can be used to create the mask:

 i |= 1 << j; /* sets bit j */

•  The constant used to set a bit is known as a mask.
•  Example:

o  If j has the value 3, then 1 << j is 0x0008.

Using the Bitwise Operators to
Access Bits

•  Clearing a bit.
 i = 0x00ff;
 /* i is now 0000000011111111 */

 i &= ~0x0010;
 /* i is now 0000000011101111 */

•  A statement that clears a bit whose position is
stored in a variable:

 i &= ~(1 << j); /* clears bit j */

Using the Bitwise Operators to
Access Bits

•  Testing a bit.
•  An if statement that tests whether bit 4 of i is set:
 if (i & 0x0010) … /* tests bit 4 */

•  A statement that tests whether bit j is set:
 if (i & 1 << j) … /* tests bit j */

•  Suppose that bits 0, 1, and 2 of a number correspond to the
colors blue, green, and red, respectively.

•  Names that represent the three bit positions:
o  enum{BLUE = 1, GREEN = 2, RED = 4};

•  Examples of setting, clearing, and testing the BLUE bit:
o  i |= BLUE; – sets the BLUE bit
o  i &= ~BLUE; – clears the BLUE bit
o  if (i & BLUE) – tests the BLUE bit

•  It’s also easy to set, clear, or test several bits at time:
o  i |= BLUE|GREEN – sets the BLUE and GREEN bits
o  i &= ~(BLUE|GREEN) – clears BLUE and GREEN
o  if (i&(BLUE|GREEN)) – tests BLUE and GREEN

•  The if statement tests whether either the BLUE bit or the GREEN bit is set.

enum and Bit Masks
•  A group of several consecutive bits is a bit-field.
•  Common bit-field operations:

o Modifying a bit-field
o Retrieving a bit-field

Bit Fields

4	

•  Modifying a bit-field
o A bitwise and (to clear the bit-field)
o A bitwise or (to store new bits in the bit-field)
o Example: stores 101 in bits 4-6

 i = i & ~0x0070 | 0x0050;
o  The & clears bits 4-6 and the | sets bits 4 and 6
o  Just using | will not always work, as it doesn’t clear bit

5
o Assume that j contains the value to be stored in bits

4–6 of i. To store j into position 4-6 of i:
i = (i & ~0x0070) | (j << 4);

Bit Fields
•  Retrieving a bit-field

o Fetching a bit-field at the right end of a number (in
the least significant bits)
•  Example: retrieve bits 0-2 of i
 j = i & 0x0007;

o What if the bit-field isn’t at the right end of i?
•  Example: retrieve bits 4-6 of i

o First shift the bit-field to the end
o Then extracting the field using the & operator:

 j = (i >> 4) & 0x0007;

Bit Fields

Program: XOR Encryption
•  Encrypt data is to exclusive-or (XOR) each character

with a secret key.
•  Suppose that the key is the & character.
•  XORing this key with the character z yields the \

character:
 00100110 (ASCII code for &)
 XOR 01111010 (ASCII code for z)
 01011100 (ASCII code for \)

•  Decrypting a message is done by applying the same
algorithm:
 00100110 (ASCII code for &)
 XOR 01011100 (ASCII code for \)
 01111010 (ASCII code for z)

Program: XOR Encryption
•  A sample file named msg:
 Trust not him with your secrets, who, when left
 alone in your room, turns over your papers.
 --Johann Kaspar Lavater (1741-1801)

•  A command that encrypts msg, saving the encrypted
message in newmsg:

 xor <msg >newmsg

•  Contents of newmsg:
 rTSUR HIR NOK QORN _IST UCETCRU, QNI, QNCH JC@R
 GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU.
 --lINGHH mGUVGT jGPGRCT (1741-1801)

•  A command that recovers the original message and
displays it on the screen:

 xor <newmsg

Program: XOR Encryption
•  The xor.c program won’t change some

characters, including digits.
•  XORing these characters with & would produce

invisible control characters, which could cause
problems with some operating systems.

•  The program checks whether both the original
character and the new (encrypted) character are
printing characters.

•  If not, the program will write the original character
instead of the new character.

xor.c

/* Performs XOR encryption */

#include <ctype.h>
#include <stdio.h>

#define KEY '&'

int main(void)
{
 int orig_char, new_char;

 while ((orig_char = getchar()) != EOF) {
 new_char = orig_char ^ KEY;
 if (isprint(orig_char) && isprint(new_char))
 putchar(new_char);
 else
 putchar(orig_char);
 }

 return 0;
}

5	

Bit-Fields in Structures
•  C allows structure declarations whose members are

bit-fields.
•  DOS allocates only 16 bits for a date, with 5 bits

for the day, 4 bits for the month, and 7 bits for the
year:

struct file_date {
 unsigned int day: 5;
 unsigned int month: 4;
 unsigned int year: 7;
}

struct file_date fd;

fd.day = 28;
fd.month = 12;
fd.year = 8; /* 1988 */

Bit-Fields and Memory
•  Bit Fields do not have addresses

o scanf("%d", &fd.day); /*wrong*/
•  How bit fields are stored is highly machine and

implementation dependent. The example in the
previous slide assumes 16-bit units.

•  When bit fields do not fit a storage unit precisely,
what happens is compiler dependent.

•  When a data item consists of more than one byte, there
are two logical ways to store it in memory (the order of
storing bytes):
o Big-endian: Bytes are stored in “natural” order (the

leftmost byte comes first).
o  Little-endian: Bytes are stored in reverse order (the

leftmost byte comes last).
•  x86 processors use little-endian order.
•  We don’t normally need to worry about byte ordering.
•  However, programs that deal with memory at a low

level must be aware of the order in which bytes are
stored.

Big-endian and Little-endian
•  A way to determine endianness of your machine

Big-endian and Little-endian

#include <stdio.h>
int main()
{
 unsigned int i = 1;
 char *c = (char*)&i;
 if (*c)
 printf("Little endian");
 else
 printf("Big endian");
 getchar();
 return 0;
}

