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Pointer values 
•  Pointer values are memory addresses 

–  Think of them as a kind of integer values 
–  The first byte of memory is 0, the next 1, and so on 
–  A pointer p can hold the address of  a memory location 
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n  A pointer points to an object of a given type 
n  E.g. a double* points to a double, not to a string 

n  A pointer’s type determines how the memory referred to by 
the pointer’s value is used 
n  E.g. what a double* points to can be added not, say, concatenated 



The computer’s memory 

•  As a program sees it 
–  Local variables “lives on the stack” 
–  Global variables are “static data” 
–  The executable code are in “the code section” 

3 



The free store 
(sometimes called "the heap") 

•  You request memory "to be allocated" "on the free store" by the new operator 
–  The new operator returns a pointer to the allocated memory 
–  A pointer is the address of the first byte of the memory 
–  For example 

•  int* p = new int;  // allocate one uninitialized  int 
   // int* means “pointer to int” 

•  int* q = new int[7];  // allocate seven uninitialized ints 
   // “an array of 7 ints” 

•  double* pd = new double[n];  // allocate n uninitialized doubles 
–  A pointer points to an object of its specified type 
–  A pointer does not know how many elements it points to 
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Access 

•  Individual elements 
int* p1 = new int;   // get (allocate) a new uninitialized int  
int* p2 = new int(5);  // get a new int initialized to 5 
 
int x = *p2;    // get/read the value pointed to by p2 

     // (or “get the contents of what p2 points to”) 
     // in this case, the integer 5 

int y = *p1;   // undefined: y gets an undefined value; don’t do that   
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Access 

•  Arrays (sequences of elements) 
int* p3 = new int[5];  // get (allocate) 5 ints  

     // array elements are numbered 0, 1, 2, … 
 

p3[0] = 7;   // write to (“set”) the 1st element  of p3 
p3[1] = 9; 
 

int x2 = p3[1];  // get the value of the 2nd element of p3 
 

int x3 = *p3;    // we can also use the dereference operator * for an array 
      // *p3 means p3[0]  (and vice versa) 
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Why use free store? 

n To	
  allocate	
  objects	
  that	
  have	
  to	
  outlive	
  the	
  func9on	
  
that	
  creates	
  them:	
  
n For	
  example	
  

double*	
  make(int	
  n) 	
  //	
  allocate	
  n	
  ints	
  
{	
  

return	
  new	
  double[n];	
  
}	
  

	
  
n Another	
  example:	
  vector's	
  constructor	
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Pointer values 

•  Pointer values are memory addresses 
– Think of them as a kind of integer values 
– The first byte of memory is 0, the next 1, and so on 
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// you can see pointer value (but you rarely need/want to): 
char* p1 = new char('c');  // allocate a char and initialize it to 'c' 
int* p2 = new int(7);   // allocate an int and initialize it to 7 
cout << "p1==" << p1 << " *p1==" << *p1 << "\n";  // p1==??? *p1==c 
cout << "p2==" << p2 << " *p2==" << *p2 << "\n";  // p2==??? *p2=7 
 

0 1 2 2^20-1 
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Access 
n A	
  pointer	
  does	
  not	
  know	
  the	
  number	
  of	
  elements	
  that	
  
it's	
  poin9ng	
  to	
  (only	
  the	
  address	
  of	
  the	
  first	
  element)	
  
double*	
  p1	
  =	
  new	
  double;	
  
*p1	
  =	
  7.3; 	
   	
  //	
  ok	
  
p1[0]	
  =	
  8.2; 	
   	
  //	
  ok	
  
p1[17]	
  =	
  9.4;	
   	
  //	
  ouch!	
  Undetected	
  error	
  
p1[-­‐4]	
  =	
  2.4; 	
   	
  //	
  ouch!	
  Another	
  undetected	
  error	
  
	
  
double*	
  p2	
  =	
  new	
  double[100];	
  
*p2	
  =	
  7.3; 	
   	
  //	
  ok	
  
p2[17]	
  =	
  9.4;	
   	
  //	
  ok	
  
p2[-­‐4]	
  =	
  2.4; 	
   	
  //	
  ouch!	
  Undetected	
  error	
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Access 
n A	
  pointer	
  does	
  not	
  know	
  the	
  number	
  of	
  elements	
  that	
  
it's	
  poin9ng	
  to	
  
double*	
  p1	
  =	
  new	
  double;	
  
double*	
  p2	
  =	
  new	
  double[100];	
  
	
  
	
  
	
  
p1[17]	
  =	
  9.4;	
  	
  	
  	
  //	
  error	
  (obviously)	
  
	
  

p1	
  =	
  p2;	
  	
  	
   	
  	
  	
  	
  //	
  assign	
  the	
  value	
  of	
  p2	
  to	
  p1	
  
	
  
	
  
	
  
p1[17]	
  =	
  9.4;	
  	
  	
  	
  	
  	
  //	
  now	
  ok:	
  p1	
  now	
  points	
  to	
  the	
  array	
  of	
  100	
  doubles	
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p2: 

p1: 

(after the assignment) 

[0]: [99]: 



Access 
n A	
  pointer	
  does	
  know	
  the	
  type	
  of	
  the	
  object	
  that	
  it's	
  
poin9ng	
  to	
  
int*	
  pi1	
  =	
  new	
  int(7);	
  
int*	
  pi2	
  =	
  pi1; 	
  //	
  ok:	
  pi2	
  points	
  to	
  the	
  same	
  object	
  as	
  pi1	
  
double*	
  pd	
  =	
  pi1; 	
  //	
  error:	
  can't	
  assign	
  an	
  int*	
  to	
  a	
  double*	
  
char*	
  pc	
  =	
  pi1; 	
  //	
  error:	
  can't	
  assign	
  an	
  int*	
  to	
  a	
  char*	
  
n  There	
  are	
  no	
  implicit	
  conversions	
  between	
  a	
  pointer	
  	
  to	
  one	
  value	
  

type	
  to	
  a	
  pointer	
  to	
  another	
  value	
  type	
  
n  However,	
  there	
  are	
  implicit	
  conversions	
  between	
  value	
  types:	
  
	
  
	
  
*pc	
  =	
  8; 	
  //	
  ok:	
  we	
  can	
  assign	
  an	
  int	
  to	
  a	
  char	
  
*pc	
  =	
  *pi1; 	
  //	
  ok:	
  we	
  can	
  assign	
  an	
  int	
  to	
  a	
  char	
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Pointers, arrays, and vector 

•  Note 
–  With pointers and arrays we are "touching" hardware 

directly with only the most minimal help from the 
language. Here is where serious programming errors can 
most easily be made, resulting in malfunctioning programs 
and obscure bugs 

•  Be careful and operate at this level only when you really need to 

–  vector is one way of getting almost all of the flexibility and 
performance of arrays with greater support from the 
language (read: fewer bugs and less debug time). 
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A problem: memory leak 
double* calc(int result_size, int max) 
{ 

 double* p = new double[max]; // allocate another max doubles 
     // i.e., get max doubles from the free store 
 double* result = new double[result_size];   
 // … use p to calculate results to be put in result … 
 return result; 

} 
 

double* r = calc(200,100);  // oops! We “forgot” to give the memory  
     // allocated for p back to the free store 

•  Lack of de-allocation (usually called "memory leaks") can be a 
serious problem in real-world programs 

•  A program that must run for a long time can't afford any 
memory leaks 13 



A problem: memory leak 
double* calc(int result_size, int max) 
{ 

 int* p = new double[max];  // allocate another max doubles 
     // i.e., get max doubles from the free store 
 double* result = new double[result_size];   
 // … use p to calculate results to be put in result … 
 delete[ ] p;    // de-allocate (free) that array 
     // i.e., give the array back to the free store 
 return result; 

} 
 

double* r = calc(200,100);   
// use r 
delete[ ] r;    // easy to forget 
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Memory leaks 
•  A program that needs to run "forever" can't afford any memory 

leaks 
–  An operating system is an example of a program that “runs forever” 

•  If a function leaks 8 bytes every time it is called, how many 
days can it run before it has leaked/lost a megabyte? 
–  Trick question: not enough data to answer, but about 130,000 calls 

•  All memory is returned to the system at the end of the program 
–  If you run using an operating system (Windows, Unix, whatever) 

•  Program that runs to completion with predictable memory 
usage may leak without causing problems 
–  i.e., memory leaks aren’t “good/bad” but they can be a major problem 

in specific circumstances 
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Memory leaks 
•  Another way to get a 

memory leak 
 
void f() 
{ 

 double* p = new double[27]; 
 // … 
 p = new double[42]; 
 // … 
 delete[] p; 

} 
 
// 1st array (of 27 doubles) leaked 
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Memory leaks 

•  How do we systematically and simply avoid memory 
leaks? 
–  don't mess directly with new and delete 

•  Use vector, etc. 

–  Or use a garbage collector 
•  A garbage collector is a program the keeps track of all of your 

allocations and returns unused free-store allocated memory to the 
free store (not covered in this course; see http://
www.research.att.com/~bs/C++.html) 

•  Unfortunately, even a garbage collector doesn’t prevent all leaks 
•  See also Chapter 25 
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A problem: memory leak 
void f(int x) 
{ 

 int* p = new int[x];  // allocate x ints 
 vector v(x);   // define a vector (which allocates another x ints) 
 // … use p and v … 
 delete[ ] p;  // deallocate the array pointed to by p 
 // the memory allocated by v is implicitly deleted here by vector's destructor 

} 
 

•  The delete now looks verbose and ugly 

–  How do we avoid forgetting to delete[ ] p? 
–  Experience shows that we often forget 

•  Prefer deletes in destructors 
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Free store summary 
•  Allocate using new 

–  New allocates an object on the free store, sometimes initializes it, and 
returns a pointer to it 

•  int* pi = new int;   // default initialization (none for int) 
•  char* pc = new char('a');  // explicit initialization 
•  double* pd = new double[10]; // allocation of (uninitialized) array 

–  New throws a bad_alloc exception if it can't allocate 
•  Deallocate using delete and delete[ ] 

–  delete and delete[ ] return the memory of an object allocated by new to 
the free store so that the free store can use it for new allocations 

•  delete pi;  // deallocate an individual object 
•  delete pc;  // deallocate an individual object 
•  delete[ ] pd;  // deallocate an array 

–  Delete of a zero-valued pointer ("the null pointer") does nothing 
•  char* p = 0; 
•  delete p;  // harmless 
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void* 
•  void* means “pointer to some memory that the compiler doesn't 

know the type of” 
•  We use void* when we want to transmit an address between 

pieces of code that really don't know each other's types – so the  
programmer has to know 
–  Example: the arguments of a callback function 

•  There are no objects of type void 
–  void v;  // error 
–  void f();  // f() returns nothing – f() does not return an object of type void 

•  Any pointer to object can be assigned to a void* 
–  int* pi = new int; 
–  double* pd = new double[10]; 
–  void* pv1 = pi; 
–  void* pv2 = pd; 
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void* 
•  To use a void* we must tell the compiler what it points to 

void f(void* pv) 
{ 

 void* pv2 = pv;  // copying is ok (copying is what void*s are for) 
 double* pd = pv;  // error: can’t implicitly convert void* to double* 
 *pv = 7;   // error: you can’t dereference a void* 
    // good! The int 7 is not represented  like the double 7.0) 
 pv[2] = 9;  // error: you can’t subscript a void* 
 pv++;   // error: you can’t increment a void* 
 int* pi = static_cast<int*>(pv); // ok: explicit conversion  
 // … 

} 
 

•  A static_cast can be used to explicitly convert to a pointer to 
object type 
–  "static_cast" is a deliberately ugly name for an ugly (and dangerous) 

operation – use it only when absolutely necessary   
21 



void* 

•  void* is the closest C++ has to a plain machine address 
–  Some system facilities require a void* 
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Pointers and references 
•  Think of a reference as an automatically dereferenced 

pointer 
–  Or as “an alternative name for an object” 
–  A reference must be initialized 
–  The value of a reference  cannot be changed after 

initialization 
int x = 7; 
int y = 8; 
int* p = &x;  *p = 9; 
p = &y;  // ok 
int& r = x;  x = 10; 
r = &y;  // error (and so is all other attempts to change what r refers to) 
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Copy terminology 
•  Shallow copy: copy only a pointer so that the two pointers 

now refer to the same object 
–  What pointers and references do 

•  Deep copy: copy the pointer and also what it points to so that 
the two pointers now each refer to a distinct object 
–  What vector, string, etc. do 
–  Requires copy constructors and copy assignments for container classes 
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Arrays 
•  Arrays don’t have to be on the free store 

char ac[7];          // global array – “lives” forever – “in static storage” 
int max = 100; 
int ai[max]; 
 
int f(int n) 
{ 

 char lc[20];     // local array – “lives” until the end of scope – on stack 
 int li[60]; 
 double lx[n];   // error: a local array size must be known at compile time 
          // vector<double> lx(n); would work 
 // … 

} 
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Address of: & 
•  You can get a pointer to any object 

– not just to objects on the free store 
int a; 
char ac[20]; 
 

void f(int n) 
{ 

 int b; 
 int* p = &b;  // pointer to individual variable 
 p = &a; 
 char* pc = ac; // the name of an array names a pointer to its first element 
 pc = &ac[0];  // equivalent to pc = ac 
 pc = &ac[n];  // pointer to ac’s nth element (starting at 0th) 
    // warning: range is not checked 
 // … 

} 
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Arrays (often) convert to pointers 
void f(int pi[ ])  // equivalent to void f(int* pi)  
 { 

 int a[ ] = { 1, 2, 3, 4 }; 
 int b[ ] = a;  // error: copy isn’t defined for arrays 
 b = pi;   // error: copy isn’t defined for arrays. Think of a 
     // (non-argument) array name as an immutable pointer 
 pi = a;   // ok: but it doesn’t copy: pi now points to a’s first element 
     // Is this a memory leak? (maybe) 
 int* p = a;  // p points to the first element of a 
 int* q = pi;  // q points to the first element of a 

} 
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Arrays don’t know their own size 
void f(int pi[ ], int n, char pc[ ])  

 // equivalent to void f(int* pi, int n, char* pc)  
  // warning: very dangerous code, for illustration only, 
  // never “hope” that sizes will always be correct 

{ 

 char buf1[200]; 
 strcpy(buf1,pc);  // copy characters from pc into buf1 
      // strcpy terminates when a '\0' character is found 
      // hope that pc holds less than 200 characters 
 strncpy(buf1,pc,200); // copy 200 characters from pc to buf1 
       // padded if necessary, but final '\0' not guaranteed 

 int buf2[300];  // you can’t say char buf2[n]; n is a variable 
 if (300 < n) error("not enough space"); 
 for (int i=0; i<n; ++i)  
   buf2[i] = pi[i];    // hope that pi really has space for 
        // n ints; it might have less 

} 
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Be careful with arrays and pointers 
char* f() 
{ 

 char ch[20]; 
 char* p = &ch[90]; 
 // … 
 *p = 'a';    // we don’t know what this’ll overwrite 
 char* q;    // forgot to initialize 
 *q = 'b';    // we don’t know what this’ll overwrite 
 return &ch[10];  // oops: ch disappear upon return from f() 
      // (an infamous “dangling pointer”) 

} 
 

void g() 
{ 

 char* pp = f(); 
 // … 
 *pp = 'c'; // we don’t know what this’ll overwrite 
   // (f’s ch are gone for good after the return from f) 

} 
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Why bother with arrays? 
•  It’s all that C has  

–  In particular, C does not have vectors 
–  There is a lot of C code “out there” 

•  Here “a lot” means N*1B lines 
–  There is a lot of C++ code in C style “out there” 

•  Here “a lot” means N*100M lines 
–  You’ll eventually encounter code full of arrays and pointers  

•  They represent primitive memory in C++ programs 
–  We need them (mostly on free store allocated by new) to implement 

better container types 
•  Avoid arrays whenever you can 

–  They are the largest single source of bugs in C and (unnecessarily) in C
++ programs 

–  They are among the largest sources of security violations (usually 
(avoidable) buffer overflows) 
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Initialization syntax 
(array’s one advantage over vector) 

char ac[ ] = "Hello, world";  // array of 13 chars, not 12 (the compiler 
     // counts them and then adds a null  
     // character at the end 

char* pc = "Howdy";   // pc points to an array of 6 chars 
char* pp = {'H', 'o', 'w', 'd', 'y', 0 };    // another way of saying the same 
 
int ai[ ] = { 1, 2, 3, 4, 5, 6 };  // array of 6 ints 

     // not 7 – the “add a null character at the end” 
     // rule is for literal character strings only 

int ai2[100] = { 0,1,2,3,4,5,6,7,8,9 };    // the last 90 elements are initialized to 0 
double ad3[100] = { };   // all elements initialized to 0.0 
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