
Pointers	
 and	
 Memory	

1	

Pointer values
•  Pointer values are memory addresses

–  Think of them as a kind of integer values
–  The first byte of memory is 0, the next 1, and so on
–  A pointer p can hold the address of a memory location

2

0 1 2 2^20-1

7 600

p 600

n  A pointer points to an object of a given type
n  E.g. a double* points to a double, not to a string

n  A pointer’s type determines how the memory referred to by
the pointer’s value is used
n  E.g. what a double* points to can be added not, say, concatenated

The computer’s memory

•  As a program sees it
–  Local variables “lives on the stack”
–  Global variables are “static data”
–  The executable code are in “the code section”

3

The free store
(sometimes called "the heap")

•  You request memory "to be allocated" "on the free store" by the new operator
–  The new operator returns a pointer to the allocated memory
–  A pointer is the address of the first byte of the memory
–  For example

•  int* p = new int; // allocate one uninitialized int
 // int* means “pointer to int”

•  int* q = new int[7]; // allocate seven uninitialized ints
 // “an array of 7 ints”

•  double* pd = new double[n]; // allocate n uninitialized doubles
–  A pointer points to an object of its specified type
–  A pointer does not know how many elements it points to

4

p:

q:

Access

•  Individual elements
int* p1 = new int; // get (allocate) a new uninitialized int
int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

 // (or “get the contents of what p2 points to”)
 // in this case, the integer 5

int y = *p1; // undefined: y gets an undefined value; don’t do that

5

5

p2:

???

p1:

Access

•  Arrays (sequences of elements)
int* p3 = new int[5]; // get (allocate) 5 ints

 // array elements are numbered 0, 1, 2, …

p3[0] = 7; // write to (“set”) the 1st element of p3
p3[1] = 9;

int x2 = p3[1]; // get the value of the 2nd element of p3

int x3 = *p3; // we can also use the dereference operator * for an array
 // *p3 means p3[0] (and vice versa)

6

7 9

p3:

Why use free store?

n To	
 allocate	
 objects	
 that	
 have	
 to	
 outlive	
 the	
 func9on	

that	
 creates	
 them:	

n For	
 example	

double*	
 make(int	
 n) 	
 //	
 allocate	
 n	
 ints	

{	

return	
 new	
 double[n];	

}	

	

n Another	
 example:	
 vector's	
 constructor	

	

7

Pointer values

•  Pointer values are memory addresses
– Think of them as a kind of integer values
– The first byte of memory is 0, the next 1, and so on

8

// you can see pointer value (but you rarely need/want to):
char* p1 = new char('c'); // allocate a char and initialize it to 'c'
int* p2 = new int(7); // allocate an int and initialize it to 7
cout << "p1==" << p1 << " *p1==" << *p1 << "\n"; // p1==??? *p1==c
cout << "p2==" << p2 << " *p2==" << *p2 << "\n"; // p2==??? *p2=7

0 1 2 2^20-1

7

p2 *p2

Access
n A	
 pointer	
 does	
 not	
 know	
 the	
 number	
 of	
 elements	
 that	

it's	
 poin9ng	
 to	
 (only	
 the	
 address	
 of	
 the	
 first	
 element)	

double*	
 p1	
 =	
 new	
 double;	

*p1	
 =	
 7.3; 	
 	
 //	
 ok	

p1[0]	
 =	
 8.2; 	
 	
 //	
 ok	

p1[17]	
 =	
 9.4;	
 	
 //	
 ouch!	
 Undetected	
 error	

p1[-­‐4]	
 =	
 2.4; 	
 	
 //	
 ouch!	
 Another	
 undetected	
 error	

	

double*	
 p2	
 =	
 new	
 double[100];	

*p2	
 =	
 7.3; 	
 	
 //	
 ok	

p2[17]	
 =	
 9.4;	
 	
 //	
 ok	

p2[-­‐4]	
 =	
 2.4; 	
 	
 //	
 ouch!	
 Undetected	
 error	

	

9

7.3

8.2
7.3

p1:

p2:

Access
n A	
 pointer	
 does	
 not	
 know	
 the	
 number	
 of	
 elements	
 that	

it's	
 poin9ng	
 to	

double*	
 p1	
 =	
 new	
 double;	

double*	
 p2	
 =	
 new	
 double[100];	

	

	

	

p1[17]	
 =	
 9.4;	
 	
 	
 	
 //	
 error	
 (obviously)	

	

p1	
 =	
 p2;	
 	
 	
 	
 	
 	
 	
 //	
 assign	
 the	
 value	
 of	
 p2	
 to	
 p1	

	

	

	

p1[17]	
 =	
 9.4;	
 	
 	
 	
 	
 	
 //	
 now	
 ok:	
 p1	
 now	
 points	
 to	
 the	
 array	
 of	
 100	
 doubles	

	
 10

p1:

p2:

p1:

(after the assignment)

[0]: [99]:

Access
n A	
 pointer	
 does	
 know	
 the	
 type	
 of	
 the	
 object	
 that	
 it's	

poin9ng	
 to	

int*	
 pi1	
 =	
 new	
 int(7);	

int*	
 pi2	
 =	
 pi1; 	
 //	
 ok:	
 pi2	
 points	
 to	
 the	
 same	
 object	
 as	
 pi1	

double*	
 pd	
 =	
 pi1; 	
 //	
 error:	
 can't	
 assign	
 an	
 int*	
 to	
 a	
 double*	

char*	
 pc	
 =	
 pi1; 	
 //	
 error:	
 can't	
 assign	
 an	
 int*	
 to	
 a	
 char*	

n  There	
 are	
 no	
 implicit	
 conversions	
 between	
 a	
 pointer	
 	
 to	
 one	
 value	

type	
 to	
 a	
 pointer	
 to	
 another	
 value	
 type	

n  However,	
 there	
 are	
 implicit	
 conversions	
 between	
 value	
 types:	

	

	

*pc	
 =	
 8; 	
 //	
 ok:	
 we	
 can	
 assign	
 an	
 int	
 to	
 a	
 char	

*pc	
 =	
 *pi1; 	
 //	
 ok:	
 we	
 can	
 assign	
 an	
 int	
 to	
 a	
 char	

	

11

7 7

pi1:
pc:

Pointers, arrays, and vector

•  Note
–  With pointers and arrays we are "touching" hardware

directly with only the most minimal help from the
language. Here is where serious programming errors can
most easily be made, resulting in malfunctioning programs
and obscure bugs

•  Be careful and operate at this level only when you really need to

–  vector is one way of getting almost all of the flexibility and
performance of arrays with greater support from the
language (read: fewer bugs and less debug time).

12

A problem: memory leak
double* calc(int result_size, int max)
{

 double* p = new double[max]; // allocate another max doubles
 // i.e., get max doubles from the free store
 double* result = new double[result_size];
 // … use p to calculate results to be put in result …
 return result;

}

double* r = calc(200,100); // oops! We “forgot” to give the memory
 // allocated for p back to the free store

•  Lack of de-allocation (usually called "memory leaks") can be a
serious problem in real-world programs

•  A program that must run for a long time can't afford any
memory leaks 13

A problem: memory leak
double* calc(int result_size, int max)
{

 int* p = new double[max]; // allocate another max doubles
 // i.e., get max doubles from the free store
 double* result = new double[result_size];
 // … use p to calculate results to be put in result …
 delete[] p; // de-allocate (free) that array
 // i.e., give the array back to the free store
 return result;

}

double* r = calc(200,100);
// use r
delete[] r; // easy to forget

14

Memory leaks
•  A program that needs to run "forever" can't afford any memory

leaks
–  An operating system is an example of a program that “runs forever”

•  If a function leaks 8 bytes every time it is called, how many
days can it run before it has leaked/lost a megabyte?
–  Trick question: not enough data to answer, but about 130,000 calls

•  All memory is returned to the system at the end of the program
–  If you run using an operating system (Windows, Unix, whatever)

•  Program that runs to completion with predictable memory
usage may leak without causing problems
–  i.e., memory leaks aren’t “good/bad” but they can be a major problem

in specific circumstances

15

Memory leaks
•  Another way to get a

memory leak

void f()
{

 double* p = new double[27];
 // …
 p = new double[42];
 // …
 delete[] p;

}

// 1st array (of 27 doubles) leaked

16

p:

2nd value

1st value

Memory leaks

•  How do we systematically and simply avoid memory
leaks?
–  don't mess directly with new and delete

•  Use vector, etc.

–  Or use a garbage collector
•  A garbage collector is a program the keeps track of all of your

allocations and returns unused free-store allocated memory to the
free store (not covered in this course; see http://
www.research.att.com/~bs/C++.html)

•  Unfortunately, even a garbage collector doesn’t prevent all leaks
•  See also Chapter 25

17

A problem: memory leak
void f(int x)
{

 int* p = new int[x]; // allocate x ints
 vector v(x); // define a vector (which allocates another x ints)
 // … use p and v …
 delete[] p; // deallocate the array pointed to by p
 // the memory allocated by v is implicitly deleted here by vector's destructor

}

•  The delete now looks verbose and ugly

–  How do we avoid forgetting to delete[] p?
–  Experience shows that we often forget

•  Prefer deletes in destructors

18

Free store summary
•  Allocate using new

–  New allocates an object on the free store, sometimes initializes it, and
returns a pointer to it

•  int* pi = new int; // default initialization (none for int)
•  char* pc = new char('a'); // explicit initialization
•  double* pd = new double[10]; // allocation of (uninitialized) array

–  New throws a bad_alloc exception if it can't allocate
•  Deallocate using delete and delete[]

–  delete and delete[] return the memory of an object allocated by new to
the free store so that the free store can use it for new allocations

•  delete pi; // deallocate an individual object
•  delete pc; // deallocate an individual object
•  delete[] pd; // deallocate an array

–  Delete of a zero-valued pointer ("the null pointer") does nothing
•  char* p = 0;
•  delete p; // harmless

19

void*
•  void* means “pointer to some memory that the compiler doesn't

know the type of”
•  We use void* when we want to transmit an address between

pieces of code that really don't know each other's types – so the
programmer has to know
–  Example: the arguments of a callback function

•  There are no objects of type void
–  void v; // error
–  void f(); // f() returns nothing – f() does not return an object of type void

•  Any pointer to object can be assigned to a void*
–  int* pi = new int;
–  double* pd = new double[10];
–  void* pv1 = pi;
–  void* pv2 = pd;

20

void*
•  To use a void* we must tell the compiler what it points to

void f(void* pv)
{

 void* pv2 = pv; // copying is ok (copying is what void*s are for)
 double* pd = pv; // error: can’t implicitly convert void* to double*
 pv = 7; // error: you can’t dereference a void
 // good! The int 7 is not represented like the double 7.0)
 pv[2] = 9; // error: you can’t subscript a void*
 pv++; // error: you can’t increment a void*
 int* pi = static_cast<int*>(pv); // ok: explicit conversion
 // …

}

•  A static_cast can be used to explicitly convert to a pointer to
object type
–  "static_cast" is a deliberately ugly name for an ugly (and dangerous)

operation – use it only when absolutely necessary
21

void*

•  void* is the closest C++ has to a plain machine address
–  Some system facilities require a void*

22

Pointers and references
•  Think of a reference as an automatically dereferenced

pointer
–  Or as “an alternative name for an object”
–  A reference must be initialized
–  The value of a reference cannot be changed after

initialization
int x = 7;
int y = 8;
int* p = &x; *p = 9;
p = &y; // ok
int& r = x; x = 10;
r = &y; // error (and so is all other attempts to change what r refers to)

23

Copy terminology
•  Shallow copy: copy only a pointer so that the two pointers

now refer to the same object
–  What pointers and references do

•  Deep copy: copy the pointer and also what it points to so that
the two pointers now each refer to a distinct object
–  What vector, string, etc. do
–  Requires copy constructors and copy assignments for container classes

24

x:

y: Copy of y: y:

Copy of x: x: Copy of x:

Shallow copy Deep copy

Arrays
•  Arrays don’t have to be on the free store

char ac[7]; // global array – “lives” forever – “in static storage”
int max = 100;
int ai[max];

int f(int n)
{

 char lc[20]; // local array – “lives” until the end of scope – on stack
 int li[60];
 double lx[n]; // error: a local array size must be known at compile time
 // vector<double> lx(n); would work
 // …

}

25

Address of: &
•  You can get a pointer to any object

– not just to objects on the free store
int a;
char ac[20];

void f(int n)
{

 int b;
 int* p = &b; // pointer to individual variable
 p = &a;
 char* pc = ac; // the name of an array names a pointer to its first element
 pc = &ac[0]; // equivalent to pc = ac
 pc = &ac[n]; // pointer to ac’s nth element (starting at 0th)
 // warning: range is not checked
 // …

}

26

p:

a: ac:

pc:

Arrays (often) convert to pointers
void f(int pi[]) // equivalent to void f(int* pi)
 {

 int a[] = { 1, 2, 3, 4 };
 int b[] = a; // error: copy isn’t defined for arrays
 b = pi; // error: copy isn’t defined for arrays. Think of a
 // (non-argument) array name as an immutable pointer
 pi = a; // ok: but it doesn’t copy: pi now points to a’s first element
 // Is this a memory leak? (maybe)
 int* p = a; // p points to the first element of a
 int* q = pi; // q points to the first element of a

}

27

1

pi:

a: 2 3 4

p:

1st

2nd

q:

Arrays don’t know their own size
void f(int pi[], int n, char pc[])

 // equivalent to void f(int* pi, int n, char* pc)
 // warning: very dangerous code, for illustration only,
 // never “hope” that sizes will always be correct

{

 char buf1[200];
 strcpy(buf1,pc); // copy characters from pc into buf1
 // strcpy terminates when a '\0' character is found
 // hope that pc holds less than 200 characters
 strncpy(buf1,pc,200); // copy 200 characters from pc to buf1
 // padded if necessary, but final '\0' not guaranteed

 int buf2[300]; // you can’t say char buf2[n]; n is a variable
 if (300 < n) error("not enough space");
 for (int i=0; i<n; ++i)
 buf2[i] = pi[i]; // hope that pi really has space for
 // n ints; it might have less

}

28

Be careful with arrays and pointers
char* f()
{

 char ch[20];
 char* p = &ch[90];
 // …
 *p = 'a'; // we don’t know what this’ll overwrite
 char* q; // forgot to initialize
 *q = 'b'; // we don’t know what this’ll overwrite
 return &ch[10]; // oops: ch disappear upon return from f()
 // (an infamous “dangling pointer”)

}

void g()
{

 char* pp = f();
 // …
 *pp = 'c'; // we don’t know what this’ll overwrite
 // (f’s ch are gone for good after the return from f)

}

29

Why bother with arrays?
•  It’s all that C has

–  In particular, C does not have vectors
–  There is a lot of C code “out there”

•  Here “a lot” means N*1B lines
–  There is a lot of C++ code in C style “out there”

•  Here “a lot” means N*100M lines
–  You’ll eventually encounter code full of arrays and pointers

•  They represent primitive memory in C++ programs
–  We need them (mostly on free store allocated by new) to implement

better container types
•  Avoid arrays whenever you can

–  They are the largest single source of bugs in C and (unnecessarily) in C
++ programs

–  They are among the largest sources of security violations (usually
(avoidable) buffer overflows)

30

Initialization syntax
(array’s one advantage over vector)

char ac[] = "Hello, world"; // array of 13 chars, not 12 (the compiler
 // counts them and then adds a null
 // character at the end

char* pc = "Howdy"; // pc points to an array of 6 chars
char* pp = {'H', 'o', 'w', 'd', 'y', 0 }; // another way of saying the same

int ai[] = { 1, 2, 3, 4, 5, 6 }; // array of 6 ints

 // not 7 – the “add a null character at the end”
 // rule is for literal character strings only

int ai2[100] = { 0,1,2,3,4,5,6,7,8,9 }; // the last 90 elements are initialized to 0
double ad3[100] = { }; // all elements initialized to 0.0

31

