
Pointers	 and	 Arrays	

Based	 on	 materials	 by	 Dianna	 Xu	

1

Today’s Goals

•  Pointers
– Declaration
– Assignment
–  Indirection/de-referencing

•  Arrays

2

Common C/C++ Data Types

•  Based on 32-bit architecture
•  Shaded values are approximate.
•  Precision of float is 6 digits, double is 9-15 digits.

3

Size Type
[bit] [byte]

Largest
value

Smallest
value

int 32 4 2×109 −2×109
float 32 4 1038 −1038
double 64 8 10308 −10308
char 8 1 127 -128

Double stands for “double-precision floating point”.

Variable and Address
•  Variable = Storage in computer

memory
– Contains some value
– Must reside at a specific location

called address
– Basic unit – byte
–  Imagine memory as a one-

dimensional array with addresses
as byte indices

– A variable consists of one or more
bytes, depending on its type (size)

4

Memory
70
31
4
6
30
1
10
4
6
95

201
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

char

int

Pointer – Reference

•  A pointer (pointer variable) is a variable that
stores an address (like Java reference)
– value – address of some memory
–  type – size of that memory

•  Recall in Java, when one declares variables
of a class type, these are automatically
references.

•  In C/C++, pointers have special syntax and
much greater flexibility.

5

Memory and Address
•  A machine with 16 Megabytes of memory

has ? bytes

•  Since each byte has a unique address, there are
at least that many addresses

•  A pointer stores a memory address, thus the
size of a pointer is machine dependent

•  With most data models it is the largest integer
on the machine, size of unsigned long

•  Defined in inttypes.h
– uintptr_t and uintmax_t

6

216,777,1622216 20420 =×=×

Address Operations in C/C++

•  Declaration of pointer variables
– The pointer declarator ‘*’

•  Use of pointers
– The address of operator ‘&’
– The indirection operator ‘*’ – also known as

de-referencing a pointer

7

Pointer Declaration
•  Syntax

– destinationType * varName;
•  Must be declared with its associated type.
•  Examples

– int *ptr1;
 A pointer to an int variable

– char *ptr2;
 A pointer to a char variable

8

ptr1

ptr2

will contain addresses

Pointers are NOT integers
•  Although memory addresses are essentially

very large integers, pointers and integers are
not interchangeable.

•  Pointers are not of the same type
•  A pointer’s type depends on what it points to

– int *p1; // sizeof(int)
– char *p2; // sizeof(char)

•  C/C++ allows free conversion btw different
pointer types via casting (dangerous)

9

Address of Operator
•  Syntax

– & expression
 The expression must have an address. E.g., a
constant such as “1” does not have an address.

•  Example
– int x = 1;
 f(&x);
 The address of x (i.e. where x is stored in
memory), say, the memory location 567, (not 1)
is passed to f.

10

x 1
address = 567

Pointer Assignment

•  A pointer p points to x if x’s address is stored
in p

•  Example
– int x = 1;
 int *p;
 p = &x;

 Interpreted as:

11

p 567

x 1
address = 567

p x 1

Pointer Diagram

12

0012FF88 8

ip i (@0012FF88)

int i = 8;
int *ip;

ip = &i;

Pointer Assignment

•  A pointer p points to x if x’s address is stored
in p

•  Example
– int x = 1;
 int *p, *q;
 p = &x;
 q = p;
 Interpreted as:

13

p 567

x 1
address = 567

p x 1

q 567

q

Pointer Assignment

•  Example
– int x=1, y=2, *p, *q;
 p = &x; q = &y;
 q = p;

14

p 567

y 2
address = 988

q 988

x 1
address = 567

567

Indirection Operator
•  Syntax

– * pointerVar
– Allows access to value of memory being pointed to
– Also called dereferencing

•  Example
– int x = 1, *p;
 p = &x;
 printf("%d\n", *p);
 *p refers to x; thus prints 1

15

p x 1

Note: ‘*’ in a declaration and ‘*’ in
an expression are different.
int *p; int * p; int* p;

Assignment Using Indirection Operator

•  Allows access to a variable indirectly through
a pointer pointed to it.

•  Pointers and integers are not interchangeable
•  Example

– int x = 1, *p;
 p = &x;
 *p = 2;
 printf("%d\n", x);
– *p is equivalent to x

16

p x 1

p x 2

Schematically

17

int x = 1;

int *p;

p = &x;

printf("%d", *p);

*p = 2;

printf("%d", x);

x 1

p

prints 1

x 1

p

prints 2

x 2

p

The NULL Pointer

•  C++ guarantees that zero is never a valid
address for data

•  A pointer that contains the address zero known
as the NULL pointer

•  It is often used as a signal for abnormal or
terminal event

•  It is also used as an initialization value for
pointers

18

Arrays

•  Schematic representation

19

element

0 1 2 k-2 k-1 index

•  Declaration – int a[5];
•  Assignment – a[0] = 1;
•  Reference – y = a[0];

a ? ? ? ? ?

a
0 4

? ? ? ? 1

Pointers and Arrays
•  Arrays are contiguous

allocations of memory of
the size:
sizeof(elementType)
* numberOfElements

•  Given the address of the
first byte, using the type
(size) of the elements one
can calculate addresses to
access other elements

20

Memory
70
31
4
6
30
1
10
4
6
31

45
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

array

1
pointer

Name of an Array

•  The variable name of an array is also a pointer
to its first element.

•  a == &a[0]
•  a[0] == *a

21

a:
a[0] a[1] a[8]

a a+1 a+8

Pointer Arithmetic
•  One can add/subtract an integer to/from a

pointer
•  The pointer advances/retreats by that number

of elements (of the type being pointed to)
–  a+i == &a[i]
–  a[i] == *(a+i)

•  Subtracting two pointers yields the number
of elements between them

22

Multi-Dimensional Array

23

0 1 2 k-2 k-1

0

1

2

second
dimension

first dim
ension

int a[2][3];

a[0][1] = 5;
y = a[0][1];

a ? ? ?
? ? ?

a

0 2
5 ? ?
? ? ?

0
1

1

Pointer Arrays: Pointer to Pointers
•  Pointers can be stored in arrays
•  Two-dimensional arrays are just arrays

of pointers to arrays.
– int a[10][20]; int *b[10];
– Declaration for b allows 10 int pointers, with

no space allocated.
– Each of them can point to an array of 20 integers
– int c[20]; b[0] = c;
– What is the type of b?

24

Ragged Arrays

25

Summary
•  Pointer and integers are not exchangeable
•  Levels of addressing (i.e. layers of pointers) can be

arbitrarily deep
•  Remember the & that you MUST put in front of
scanf variables?

•  Failing to pass a pointer where one is expected or
vise versa always leads to segmentation faults.

•  Understand the relationship between arrays and
pointers

•  Understand the relationship between two-
dimensional arrays and pointer arrays

•  Pointer arithmetic is powerful yet dangerous!
26

