Functions and Header/Source
files in C++

Based on materials by Dianna Xu and
Bjarne Stroustrup (www.stroustrup.com/Programming)

Declarations

A declaration introduces a name 1nto a scope.

A declaration also specifies a type for the named object.
Sometimes a declaration includes an initializer.

A name must be declared before it can be used in a C++ program.

Examples:
— inta=7; // an int variable named ‘a’ is declared
— const double cd = 8.7; // a double-precision floating-point constant

— double sqrt(double); // a function taking a double argument and
Il returning a double result

— vector<Token> v; Il a vector variable of Tokens (variable)

Stroustrup/Programming 2

Declarations

* Declarations are frequently introduced into a program through
“headers”

— A header 1s a file containing declarations providing an interface to other
parts of a program

* This allows for abstraction — you don’ t have to know the details
of a function like cout in order to use 1t. When you add

#include "../../std_lib_facilities.h"

to your code, the declarations 1n the file std_lib_facilities.h
become available (including cout etc.).

Stroustrup/Programming

Definitions

A declaration that (also) fully specifies the entity declared 1s
called a definition

— Examples
inta=7;
int b; /I an int with the default value (0)
vector<double> v; Il an empty vector of doubles

double sqrt(double) { ... }; /l'i.e. a function with a body
struct Point { int x; inty; };
— Examples of declarations that are not definitions

double sqrt(double); Il function body missing
struct Point; Il class members specified elsewhere
extern int a; /I extern means “not definition”

/I “extern” is archaic; we will hardly use it

Stroustrup/Programming 4

Declarations and definitions

* You can’ t define something twice
— A definition says what something 1s

— Examples
int a; Il definition
int a; Il error: double definition

double sqrt(double d) { ... } // definition
double sqrt(double d) { ... } // error: double definition

* You can declare something twice
— A declaration says how something can be used

inta=7; Il definition (also a declaration)
extern int a; /] declaration
double sqrt(double); /I declaration

double sqrt(double d) { ... } // definition (also a declaration)

Stroustrup/Programming

Why both declarations and
definitions?

To refer to something, we need (only) its declaration
Often we want the definition “elsewhere”

— Later in a file
— In another file
» preferably written by someone else
Declarations are used to specify interfaces
— To your own code

— To libraries

* Libraries are key: we can’ t write all ourselves, and wouldn’ t want to

In larger programs

— Place all declarations in header files to ease sharing

Stroustrup/Programming

Functions

* Function: Unit of operation
— A series of statements grouped together

e Must have the main function

e Write small functions!

* Most programs contain multiple function
definitions

Lec05

Functions

General form:
— return_type name (formal arguments); /I a declaration
— return_type name (formal arguments) body /I a definition

— For example
double f(int a, double d) { return a*d; }

Formal arguments are often called parameters

If you don’ t want to return a value give void as the return
type
void increase power(int level);
— Here, void means “don’ t return a value”
A body 1s a block or a try block
— For example
{ I* code */ } Il a block
try { /* code */ } catch(exception& e) { /* code */} // a try block

Functions represent/implement computations/calculations

Stroustrup/Programming

Identity Repeated Code

int main() {
int choice;

printf ("=== Expert System ===\n");
printf ("Questionl: ...\n");
printf (
"1l. Yes\n"
"0. No\n"
"Enter the number corresponding to your choice: ");

scanf ("%d", &choice);

if (choice == 1) { /* yes */
printf ("Question 2: ...\n");
printf (
"1l. Yes\n"
"0. No\n"

"Enter the number corresponding to your choice:
scanf ("%d", &choice);

/* skipped */

"); |

10

Identity Repeated Code

int menuChoice () {
int choice;
printf (

"l. Yes\n"

"0. No\n"

"Enter the number corresponding to your choice: ");
scanf ("%d", &choice); :
return choice;

}

gint main () {

int choice;

printf ("=== Expert System ===\n");

printf ("Questionl: ...\n");

choice = menuChoice() ;

if (choice == 1) { /* yes */
printf ("Question 2: ...\n");

choice = menuChoice() ;

/* skipped */

11

}

Identify Similar Code

int choice; double km, mile;
scanf ("%$d", &choice);

switch (choice) {
case 1:
printf ("Enter a mile value: ");
scanf ("%$1f", &mile) ;
km = mile * 1.6;
printf ("%$f mile(s) = %f km\n", mile, km);
break;

caes 2:
printf ("Enter a km value: ");
scanf ("%$1£f", &km);
mile = km / 1.6;
printf ("$f km = %f mile(s)\n", km, mile);
break;

default:
printf ("\n*** error: invalid choice ***\n");

}

Lec05

Similar
unit

Similar

| unit

Use Parameters to Customize

void km mile conv(int choice) ({

int input;

printf ("Enter a %s value: ",

scanf ("$1f", &input);
if (choice == 1)

printf ("3%f mile(s) =

else
printf ("$f km(s)
}
int main() {
int choice;
scanf ("%4d",
switch (choice) {
case 1:

km mile conv(choice) ;

break;
case 2:

km mile conv(choice) ;

break;
/* more cases */

}

&choice) ;

choice==1?"mile":"km") ;

$f km(s)\n", input, input*1l.6);

= %f mile(s)\n", input, input/1.6);

More readable mai

12

Lec05

Function Call

void km_to mile() ({

printf ("Enter a mile value: ");

v

»

scanf ("$1f", &mile) ;
km = mile * 1.6;
printf ("%f mile(s) =

)

int main() {

km to mile();

= %f km\n", mile, km) ;-

13

*km to mile();

return O;

Functions: Pass by Value

/] pass-by-value (send the function a copy of the argument’s value)

int f(int a) { a = a+1; return a; }
a.

copy the value

int main()

d
int xx = 0;
cout << f(xx) << endl; // writes 1
cout << xx << endl; // writes 0; f() doesn’t change xx
intyy=7;
cout << f(yy) << endl; // writes 8; f() doesn’t change yy
cout <<yy <<endl; // writes7

XX.

Stroustrup/Programming 14

Functions: Pass by Reference

Il pass-by-reference (pass a reference to the argument)
int f(int& a) { a=a+1; return a; }

a.
int main() st call (refer to xx)
- xx:
int xx = 0;
cout << f(xx) << endl; // writes 1
Il f() changed the value of xx
cout <<xx <<endl; // writes 1
intyy=7;
cout << f(yy) << endl; // writes 8 2°Qcall (refer to yy)
Il f() changes the value of yy
cout <<yy <<endl; // writes 8 yy:
;

Stroustrup/Programming 15

Functions

* Avoid (non-const) reference arguments when you can

— They can lead to obscure bugs when you forget which
arguments can be changed
int incrl(int a) { return a+1; }
void incr2(int& a) { ++a; }
intx="7;
x = incr1(x);// pretty obvious
incr2(x); // pretty obscure

* So why have reference arguments?

— Occasionally, they are essential
» E.g., for changing several values
* For manipulating containers (e.g., vector)

— const reference arguments are very often useful

* Really, it’s best just to learn to use pointers correctly
and avoid references altogether

Stroustrup/Programming 16

Pass by value/by reference/
by const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()

{
int x =0;
inty=0;
intz=0;

g(X,y,Z); // x==0,' y==],‘ ==
¢(1,2,3); // error: reference argument r needs a variable to refer to
e(1,y,3); // ok: since cr is const we can pass “a temporary”

h

/] const references are very useful for passing large objects

Stroustrup/Programming 17

References

« “reference” is a general concept
— Not just for pass-by-reference r

inti=7;

int& r =1i;

r=9; /] i becomes 9
const int& cr = i; Cr

Il er =17, /] error: cr refers to const
i=8;
cout << cr << endl; // write out the value of i (that’s 8)

* You can
— think of a reference as an alternative name for an object

* You can't
— modify an object through a const reference

— make a reference refer to another object after initialization
Stroustrup/Programming 18

Guidance for Passing Variables

Use pass-by-value for very small objects
Use pass-by-const-reference for large objects

Return a result rather than modify an object through a reference
argument

Use pass-by-reference only when you have to

For example
class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image); // oops: this could be s-I-0-0-0-w
void f(Image& i); ... f(my_image); // no copy, but f() can modify my image
void f(const Image&); ... f(my_image); // f() won 't mess with my _image

Stroustrup/Programming 19

20

Function Return and Parameters

* The syntax for C++ functions is the same as
Java methods

* void keyword can be omitted

void km to mile(void) ({
}

mile to_km() {

}

int main() {
int choice;

}

Lec05

Use of return 1n void Functions

 Exit from the function

void getinput() ({
int choice;

while (1) {
scanf ("$d", &choice);

switch (choice) {
case 1:
/* some action */
break;
case 0:
return; /* exit from getinput */
}
}
}

21 Lec05

22

Function Prototype

* A prototype 1s a
function declaration
which includes the
return type and a list
of parameters

* A way to move
function definitions
after main

* Need not name
formal parameters

int main() {

/* function prototypes */
double km2mile (double) ;
double mile2km (double) ;

}
/* actual function definitions */
double km2mile (double k) {

)

double mile2km(double m) {

Lec05

23

Documenting Functions

e A comment for each function

* Use descriptive function name, parameter
names

#include <stdio.h>
#include <math.h>

/* truncate a value to specific precision */
double truncate (double val, int precision) {
double adj = pow (10, precision);
int tmp;

tmp = (int) (val * adj);
return tmp / adj;
}

int main() {

}

Lec05

Keep main Uncluttered

* Your main function should consist mainly of
function calls

* One main mput loop or conditional 1s okay

* Write your main and choose your function
name in such a way so that

— the main algorithm and program structure 1s
clearly represented

— the reader can get an idea how your program
works simply by glancing at your main

24 Lec05

Scope

* Ascope 1s a region of program text

— Examples
* Global scope (outside any language construct)
* Class scope (within a class)
* Local scope (between { ... } braces)
* Statement scope (e.g. in a for-statement)

* A name in a scope can be seen from within its scope

and within scopes nested within that scope
* After the declaration of the name (“can't look ahead” rule)

« A scope keeps “things” local
* Prevents my variables, functions, etc., from interfering with yours
* Remember: real programs have many thousands of entities
e Locality 1s good!
— Keep names as local as possible
Stroustrup/Programming 25

Scope

#include "std_lib_facilities.h" /I get max and abs from here
/I nor, i, orv here
class My vector {

vector<int> v; /l'v is in class scope
public:
int largest() /] largest is in class scope
{
intr=0; /I ris local
for (int i = 0; i<v.size(); ++i) /l'i is in statement scope
r = max(r,abs(v][i]));
// no i here
return r;
}
/] no r here
3
/l nov here

Stroustrup/Programming 26

Scopes nest

int x; // global variable — avoid those where you can
inty; // another global variable

int £()

{
int x; I/ local variable (Note — now there are two x’s)
x =17; Il local x, not the global x
{

intx=y; // another local x, initialized by the global y
/I (Now there are three x’s)

X++; Il increment the local x in this scope

)
)

Il avoid such complicated nesting and hiding. keep it simple!

Stroustrup/Programming

27

28

[L.ocal/Global Variables

Variables declared inside a function are local

Function arguments are local to the function
passed to

A global variable 1s a variable declared

outside of any function. |
int x = 0
In a name conflict, the local int i (int 1> {
. int x = 1;
variable takes precedence return x;
: '}

When local variable shadows

function parameter?

int main() {
| int x;

ox = £(2);
R

Lec05

Scope of Global Variables

* The scope of a global variable starts at the
point of 1ts definition.

* (Globals should be used with caution
— Avoid changing a global inside *»t *;

int £() {
a function }
— Change a global by setting it int y;
, int g() {
the return value of a function }

— [T using globals at all, declare int main() {
them at the top. }

Lec05

Storage Classes

e auto
— The default — life time 1s the defining function
— De-allocated once function exits

* static (w.r.t. local variables)

— Life time 1s the entire program — defined and
initialized the first time function 1s called only

— Scope remains the same

void £ () {
static int counter = 0;
counter++;

}

Lec05

static: globals and functions

* Using the keyword static in front of a
global or a function changes the linkage, that
1s, the scope across multiple files.

* static changes the linkage of an identifier to
internal, which means shared within a single
(the current) file

* We will discuss more of linkage and related
keywords, as well as header files when we
discuss multiple source files

31 Lec05

Namespaces

* Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; Il in Jack’s header file jack.h
class Widget { /*...*/ }; Il also in jack.h

class Blob {/*...*/ }; /1 in Jill s header file jill.h
class Widget { /*...*/ }; Il also in jill.h

#include "jack.h'"'; /] this is in your code
#include "jilLLh"'; /] so is this

void my_func(Widget p) // oops! — error: multiple definitions of Widget

d
/...

)

Stroustrup/Programming 32

Namespaces

* The compiler will not compile multiple definitions; such clashes can
occur from multiple headers.

* One way to prevent this problem 1s with namespaces:

namespace Jack { Il in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

j

#include "jack.h"'; /] this is in your code

#include "jill.Lh"'; /] so is this

void my_func(Jack::Widget p) // OK, Jack’s Widget class will not

{ Il clash with a different Widget
/...

b

Stroustrup/Programming

33

Namespaces

A namespace 1s a named scope

The :: syntax 1s used to specify which namespace you are using
and which (of many possible) objects of the same name you are
referring to

For example, cout 1s in namespace std, you could write:

std::cout << ""Please enter stuff... \n"';

Stroustrup/Programming 34

using Declarations and Directives

e To avoid the tedium of
— std::cout << "Please enter stuff... \n"’;

you could write a “using declaration”

— using std::cout; Il when I say cout, I mean std::cout”
— cout << "Please enter stuff... \n"'; // ok: std::cout
— c¢in >> x; /I error: cin not in scope

. 11 . . . 77
* or you could write a "using directive
— using namespace std; Il “make all names from std available”
— cout << "Please enter stuff... \n"; // ok: std::cout
— ¢in >>x; /] ok: std::cin

e More about header files later

Stroustrup/Programming 35

Header Files and the Preprocessor

* A header 1s a file that holds declarations of functions, types,
constants, and other program components.

* The construct
#include "../../std_lib_facilities.h"
is a “preprocessor directive” that adds declarations to your
program
— Typically, the header file 1s simply a text (source code) file
* Aheader gives you access to functions, types, etc. that you
want to use 1n your programs.

— Usually, you don’ t really care about how they are written.

— The actual functions, types, etc. are defined in other source code files
* Often as part of libraries

Stroustrup/Programming

36

Source files

token.h:

token.cpp:

use.cpp:

* A header file (here, token.h) defines an interface between user code
and implementation code (usually in a library)

e The same #include declarations in both .cpp files (definitions and

uses) ease consistency checking
Stroustrup/Programming 37

38

Header Files

Contains a collection of function prototypes,
constant and preprocessor definitions

Named with extension . h

By convention carries the same name as the
associated . cpp file

— hwl.h -2 hwl.cpp

Included 1n the source file with #include
— #include <stdio.h>
— #include "hwl.h"

A way to use functions defined 1n other source files

Lec06

39

The Preprocessor

* A piece of software that processes C/C++
programs before compilation

* Preprocessor commands begin with a #
— #include - includes a named file

— #define — defines a (text replacement) macro

— #ifdef/#else/#endif - conditional

compilation #ifdef MACRONAME
part 1
#else
part 2
#endif

Lec06

define

e Often used to define constants
— #define TRUE 1 #define FALSE 0
— ##define PI 3.14159
— #define SIZE 20

* Offers easy one-touch change of scale/size
* #define vs constants

— The preprocessor directive uses no memory
— #define may not be local

40 Lec06

#define makes it more readable

#include<stdio.h>
#define MILE 1
§#define KM 2

void km mile conv(int choice) ({
// ..
if (choice == MILE)
T
1}
int main() {
// ..
switch (choice) {
case MILE:
km mile conv(choice);
break;
caea KM:
km mile conv(choice);
break;
/* more cases */

Longer Macros

* Use the comma operator to create longer and
more sophisticated macros

e #define ECHO (c)
(c=getchar () , putchar(c))
* Use 1n program
char c;
while (1)
ECHO (c) ;

42 Lec06

Conditional Compiling

 Debugging (so that you don’ t have to remove
all your printf debugging!)

#ifdef DEBUG

// lots and lots of printfs
#else

// nothing often omitted
#endif

* Portability

#ifdef WINDOWS

// code that only works on windows
#endif

43 Lec06

Defining a Macro for #ifdef

* #define DEBUG

* #define DEBUG 0

* #define DEBUG 1

* The -Dmacro[=def] flag of g++
—g++ —-DDEBUG hwl.cpp -o hwl

—g++ —-DDEBUG=1 hwl.cpp -o hwl
—g++ -DDEBUG=0 hwl.cpp -o hwl

44 Lec06

#ifndef, #if. #elif, #else

 #ifndef 1s the opposite of #ifdef
#if DEBUG

— Test to see 1f DEBUG 1S hon-zero
— If using #i£, must use #define DEBUG 1
— Undefined macros are considered to be 0.

#elif MACRONAME

#if WINDOWS
//included if WINDOWS is non-zero
#elif LINUX
//included if WINDOWS is O but LINUX is non-zero
#else
//if both are 0
#endif

45 Lec06

Predefined Macros

* Useful macros that primarily provide
information about the current compilation

— LINE Line number of file compiled
— FILE _ Name of file being compiled
— DATE _ Date of compilation
— TIME Time of compilation

* printf ("Comipiled on %s at %s.
\n", DATE , TIME);

46 Lec06

47

#error

* #error message
— prints message to screen

— often used 1n conjunction with #ifdef, #else
#if WINDOWS

//..
#elif LINUX

//..

felse

#error OS not specified

#endif

Lec06

Program Organization

e #include and #define first
* Globals if any

* Function prototypes, unless included with
header file already

* int main () - putting your main before all
other functions makes i1t easier to read

* The rest of your function definitions

48 Lec06

Math Library Functions

* Requires an additional header file
#include <math.h>

* Must compile with additional flag —1m

* Prototypes in math.h

49

— double
— double
— double
— double
— double

sqrt (double x) ;

pow (double x, double p); xP
log (double x) ; (natural log, base e)
sin (double x)

cos (double x)

Lec06

