
Functions and Header/Source
files in C++

Based on materials by Dianna Xu and
Bjarne Stroustrup (www.stroustrup.com/Programming)

Declarations
•  A declaration introduces a name into a scope.
•  A declaration also specifies a type for the named object.
•  Sometimes a declaration includes an initializer.
•  A name must be declared before it can be used in a C++ program.
•  Examples:

–  int a = 7; // an int variable named ‘a’ is declared
–  const double cd = 8.7; // a double-precision floating-point constant
–  double sqrt(double); // a function taking a double argument and

 // returning a double result
–  vector<Token> v; // a vector variable of Tokens (variable)

Stroustrup/Programming 2

Declarations
•  Declarations are frequently introduced into a program through
“headers”
–  A header is a file containing declarations providing an interface to other

parts of a program

•  This allows for abstraction – you don’t have to know the details
of a function like cout in order to use it. When you add

#include "../../std_lib_facilities.h"

 to your code, the declarations in the file std_lib_facilities.h
become available (including cout etc.).

Stroustrup/Programming 3

Definitions

 A declaration that (also) fully specifies the entity declared is
called a definition
–  Examples

int a = 7;
int b; // an int with the default value (0)
vector<double> v; // an empty vector of doubles
double sqrt(double) { … }; // i.e. a function with a body
struct Point { int x; int y; };

–  Examples of declarations that are not definitions
 double sqrt(double); // function body missing
 struct Point; // class members specified elsewhere
 extern int a; // extern means “not definition”
 // “extern” is archaic; we will hardly use it

Stroustrup/Programming 4

Declarations and definitions
•  You can’t define something twice

–  A definition says what something is
–  Examples

int a; // definition
int a; // error: double definition
double sqrt(double d) { … } // definition
double sqrt(double d) { … } // error: double definition

•  You can declare something twice
–  A declaration says how something can be used

int a = 7; // definition (also a declaration)
extern int a; // declaration
double sqrt(double); // declaration
double sqrt(double d) { … } // definition (also a declaration)

Stroustrup/Programming 5

Why	 both	 declara.ons	 and	
defini.ons?	 	

•  To refer to something, we need (only) its declaration
•  Often we want the definition “elsewhere”

–  Later in a file
–  In another file

•  preferably written by someone else

•  Declarations are used to specify interfaces
–  To your own code
–  To libraries

•  Libraries are key: we can’t write all ourselves, and wouldn’t want to

•  In larger programs
–  Place all declarations in header files to ease sharing

Stroustrup/Programming 6

7 Lec05

Functions

•  Function: Unit of operation
– A series of statements grouped together

•  Must have the main function
•  Write small functions!
•  Most programs contain multiple function

definitions

Functions
•  General form:

–  return_type name (formal arguments); // a declaration
–  return_type name (formal arguments) body // a definition
–  For example

 double f(int a, double d) { return a*d; }
•  Formal arguments are often called parameters
•  If you don’t want to return a value give void as the return

type
 void increase_power(int level);
–  Here, void means “don’t return a value”

•  A body is a block or a try block
–  For example

{ /* code */ } // a block
try { /* code */ } catch(exception& e) { /* code */ } // a try block

•  Functions represent/implement computations/calculations

Stroustrup/Programming 8

9 Lec05

Identify Repeated Code
int main() {
 int choice;

 printf("=== Expert System ===\n");
 printf("Question1: ...\n");
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);

 if (choice == 1) { /* yes */
 printf("Question 2: ...\n");
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);
 /* skipped */

10 Lec05

Identify Repeated Code
int menuChoice() {
 int choice;
 printf(
 "1. Yes\n"
 "0. No\n"
 "Enter the number corresponding to your choice: ");
 scanf("%d", &choice);
 return choice;
}

int main() {
 int choice;

 printf("=== Expert System ===\n");
 printf("Question1: ...\n");
 choice = menuChoice();

 if (choice == 1) { /* yes */
 printf("Question 2: ...\n");
 choice = menuChoice();
 /* skipped */

11 Lec05

Identify Similar Code
int main() {
 int choice; double km, mile;
 scanf("%d", &choice);

 switch (choice) {
 case 1:
 printf("Enter a mile value: ");
 scanf("%lf", &mile);
 km = mile * 1.6;
 printf("%f mile(s) = %f km\n", mile, km);
 break;

 caes 2:
 printf("Enter a km value: ");
 scanf("%lf", &km);
 mile = km / 1.6;
 printf("%f km = %f mile(s)\n", km, mile);
 break;

 default:
 printf("\n*** error: invalid choice ***\n");
 }
}

Similar
unit

Similar
unit

12 Lec05

Use Parameters to Customize
void km_mile_conv(int choice) {
 int input;
 printf("Enter a %s value: ", choice==1?"mile":"km");
 scanf("%lf", &input);
 if (choice == 1)
 printf("%f mile(s) = %f km(s)\n", input, input*1.6);
 else
 printf("%f km(s) = %f mile(s)\n", input, input/1.6);
}
int main() {
 int choice;
 scanf("%d", &choice);
 switch (choice) {
 case 1:
 km_mile_conv(choice);
 break;
 case 2:
 km_mile_conv(choice);
 break;
 /* more cases */
 }
}

More readable main

13 Lec05

Function Call
void km_to_mile() {
 printf("Enter a mile value: ");
 scanf("%lf", &mile);
 km = mile * 1.6;
 printf("%f mile(s) = %f km\n", mile, km);
}

int main() {

 km_to_mile();

 km_to_mile();

 return 0;
}

Functions: Pass by Value
// pass-by-value (send the function a copy of the argument’s value)
int f(int a) { a = a+1; return a; }

int main()
{

 int xx = 0;
 cout << f(xx) << endl; // writes 1
 cout << xx << endl; // writes 0; f() doesn’t change xx
 int yy = 7;
 cout << f(yy) << endl; // writes 8; f() doesn’t change yy
 cout << yy << endl; // writes 7

}

Stroustrup/Programming 14

0

a:

xx:

copy the value

0

7

a:

yy:

copy the value

7

Functions: Pass by Reference
// pass-by-reference (pass a reference to the argument)
int f(int& a) { a = a+1; return a; }

int main()
{

 int xx = 0;
 cout << f(xx) << endl; // writes 1
 // f() changed the value of xx
 cout << xx << endl; // writes 1
 int yy = 7;
 cout << f(yy) << endl; // writes 8
 // f() changes the value of yy
 cout << yy << endl; // writes 8

}

Stroustrup/Programming 15

0

7

xx:

yy:

a:
1st call (refer to xx)

2nd call (refer to yy)

Functions
•  Avoid (non-const) reference arguments when you can

–  They can lead to obscure bugs when you forget which
arguments can be changed

int incr1(int a) { return a+1; }
void incr2(int& a) { ++a; }
int x = 7;
x = incr1(x); // pretty obvious
incr2(x); // pretty obscure

•  So why have reference arguments?
–  Occasionally, they are essential

•  E.g., for changing several values
•  For manipulating containers (e.g., vector)

–  const reference arguments are very often useful
•  Really, it’s best just to learn to use pointers correctly

and avoid references altogether

Stroustrup/Programming 16

Pass by value/by reference/
by const-reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()
{

 int x = 0;
 int y = 0;
 int z = 0;
 g(x,y,z); // x==0; y==1; z==0
 g(1,2,3); // error: reference argument r needs a variable to refer to
 g(1,y,3); // ok: since cr is const we can pass “a temporary”

}
// const references are very useful for passing large objects

Stroustrup/Programming 17

References
•  “reference” is a general concept

–  Not just for pass-by-reference

int i = 7;
int& r = i;
r = 9; // i becomes 9
const int& cr = i;
// cr = 7; // error: cr refers to const
i = 8;
cout << cr << endl; // write out the value of i (that’s 8)

•  You can
–  think of a reference as an alternative name for an object

•  You can’t
–  modify an object through a const reference
–  make a reference refer to another object after initialization

Stroustrup/Programming 18

7 i:

r

cr

Guidance for Passing Variables

•  Use pass-by-value for very small objects
•  Use pass-by-const-reference for large objects
•  Return a result rather than modify an object through a reference

argument
•  Use pass-by-reference only when you have to

•  For example
class Image { /* objects are potentially huge */ };
void f(Image i); … f(my_image); // oops: this could be s-l-o-o-o-w
void f(Image& i); … f(my_image); // no copy, but f() can modify my_image
void f(const Image&); … f(my_image); // f() won’t mess with my_image

Stroustrup/Programming 19

20 Lec05

Function Return and Parameters

•  The syntax for C++ functions is the same as
Java methods

•  void keyword can be omitted
void km_to_mile(void) {

}

mile_to_km() {

}

int main() {
 int choice;
}

21 Lec05

Use of return in void Functions

void getinput() {
 int choice;

 while (1) {
 scanf("%d", &choice);

 switch (choice) {
 case 1:
 /* some action */
 break;
 case 0:
 return; /* exit from getinput */
 }
 }
}

•  Exit from the function

22 Lec05

Function Prototype
•  A prototype is a

function declaration
which includes the
return type and a list
of parameters

•  A way to move
function definitions
after main

•  Need not name
formal parameters

/* function prototypes */
double km2mile(double);
double mile2km(double);
int main() {
}
/* actual function definitions */
double km2mile(double k) {

}
double mile2km(double m) {

}

23 Lec05

Documenting Functions
•  A comment for each function
•  Use descriptive function name, parameter

names
#include <stdio.h>
#include <math.h>

/* truncate a value to specific precision */
double truncate(double val, int precision) {
 double adj = pow(10, precision);
 int tmp;

 tmp = (int) (val * adj);
 return tmp / adj;
}

int main() {
}

24 Lec05

Keep main Uncluttered

•  Your main function should consist mainly of
function calls

•  One main input loop or conditional is okay
•  Write your main and choose your function

name in such a way so that
–  the main algorithm and program structure is

clearly represented
–  the reader can get an idea how your program

works simply by glancing at your main

Scope
•  A scope is a region of program text

–  Examples
•  Global scope (outside any language construct)
•  Class scope (within a class)
•  Local scope (between { … } braces)
•  Statement scope (e.g. in a for-statement)

•  A name in a scope can be seen from within its scope
and within scopes nested within that scope

•  After the declaration of the name (“can't look ahead” rule)

•  A scope keeps “things” local
•  Prevents my variables, functions, etc., from interfering with yours
•  Remember: real programs have many thousands of entities
•  Locality is good!

–  Keep names as local as possible
Stroustrup/Programming 25

Scope
#include "std_lib_facilities.h" // get max and abs from here

 // no r, i, or v here
class My_vector {

 vector<int> v; // v is in class scope
public:

 int largest() // largest is in class scope
 {
 int r = 0; // r is local
 for (int i = 0; i<v.size(); ++i) // i is in statement scope
 r = max(r,abs(v[i]));
 // no i here
 return r;
 }
 // no r here

};
 // no v here

Stroustrup/Programming 26

Scopes nest
int x; // global variable – avoid those where you can
int y; // another global variable

int f()
{

 int x; // local variable (Note – now there are two x’s)
 x = 7; // local x, not the global x
 {
 int x = y; // another local x, initialized by the global y
 // (Now there are three x’s)
 x++; // increment the local x in this scope
 }

}

// avoid such complicated nesting and hiding: keep it simple!

Stroustrup/Programming 27

28 Lec05

Local/Global Variables
•  Variables declared inside a function are local
•  Function arguments are local to the function

passed to
•  A global variable is a variable declared

outside of any function.
•  In a name conflict, the local

 variable takes precedence
•  When local variable shadows

 function parameter?

int x = 0;
int f(int x) {
 int x = 1;
 return x;
}

int main() {
 int x;
 x = f(2);
}

29 Lec05

Scope of Global Variables
•  The scope of a global variable starts at the

point of its definition.
•  Globals should be used with caution

– Avoid changing a global inside
 a function

– Change a global by setting it
 the return value of a function
–  If using globals at all, declare

 them at the top.

int x;
int f() {
}

int y;
int g(){
}

int main() {

}

30 Lec05

Storage Classes
•  auto

– The default – life time is the defining function
– De-allocated once function exits

•  static (w.r.t. local variables)
– Life time is the entire program – defined and

initialized the first time function is called only
– Scope remains the same

void f() {
 static int counter = 0;
 counter++;
}

31 Lec05

static: globals and functions

•  Using the keyword static in front of a
global or a function changes the linkage, that
is, the scope across multiple files.

•  static changes the linkage of an identifier to
internal, which means shared within a single
(the current) file

•  We will discuss more of linkage and related
keywords, as well as header files when we
discuss multiple source files

Namespaces
•  Consider this code from two programmers Jack and Jill

 class Glob { /*…*/ }; // in Jack’s header file jack.h
 class Widget { /*…*/ }; // also in jack.h

 class Blob { /*…*/ }; // in Jill’s header file jill.h
 class Widget { /*…*/ }; // also in jill.h

 #include "jack.h"; // this is in your code
 #include "jill.h"; // so is this

 void my_func(Widget p) // oops! – error: multiple definitions of Widget
 {
 // …
 }

Stroustrup/Programming 32

Namespaces
•  The compiler will not compile multiple definitions; such clashes can

occur from multiple headers.
•  One way to prevent this problem is with namespaces:

 namespace Jack { // in Jack’s header file
 class Glob{ /*…*/ };

 class Widget{ /*…*/ };
 }

 #include "jack.h"; // this is in your code

 #include "jill.h"; // so is this

 void my_func(Jack::Widget p) // OK, Jack’s Widget class will not
 { // clash with a different Widget
 // …
 }

Stroustrup/Programming 33

Namespaces

•  A namespace is a named scope
•  The :: syntax is used to specify which namespace you are using

and which (of many possible) objects of the same name you are
referring to

•  For example, cout is in namespace std, you could write:
 std::cout << "Please enter stuff… \n";

Stroustrup/Programming 34

using Declarations and Directives

•  To avoid the tedium of
–  std::cout << "Please enter stuff… \n";

 you could write a “using declaration”
–  using std::cout; // when I say cout, I mean std::cout”
–  cout << "Please enter stuff… \n"; // ok: std::cout
–  cin >> x; // error: cin not in scope

•  or you could write a “using directive”
–  using namespace std; // “make all names from std available”
–  cout << "Please enter stuff… \n"; // ok: std::cout
–  cin >> x; // ok: std::cin

•  More about header files later

Stroustrup/Programming 35

Header Files and the Preprocessor
•  A header is a file that holds declarations of functions, types,

constants, and other program components.
•  The construct

 #include "../../std_lib_facilities.h"
 is a “preprocessor directive” that adds declarations to your

program
–  Typically, the header file is simply a text (source code) file

•  A header gives you access to functions, types, etc. that you
want to use in your programs.
–  Usually, you don’t really care about how they are written.
–  The actual functions, types, etc. are defined in other source code files

•  Often as part of libraries

Stroustrup/Programming 36

Source files

•  A header file (here, token.h) defines an interface between user code
and implementation code (usually in a library)

•  The same #include declarations in both .cpp files (definitions and
uses) ease consistency checking

Stroustrup/Programming 37

// declarations:
class Token { … };
class Token_stream {
 Token get();
 …
};
…

#include "token.h"
//definitions:
Token Token_stream::get()
{ /* … */ }
…

#include "token.h"
…
Token t = ts.get();
…

token.h:

token.cpp:

use.cpp:

38 Lec06

Header Files
•  Contains a collection of function prototypes,

constant and preprocessor definitions
•  Named with extension .h
•  By convention carries the same name as the

associated .cpp file
–  hw1.h à hw1.cpp

•  Included in the source file with #include
–  #include <stdio.h>
–  #include "hw1.h"

•  A way to use functions defined in other source files

39 Lec06

The Preprocessor
•  A piece of software that processes C/C++

programs before compilation
•  Preprocessor commands begin with a #

– #include – includes a named file
– #define – defines a (text replacement) macro
– #ifdef/#else/#endif – conditional

compilation #ifdef MACRONAME
 part 1
#else
 part 2
#endif

40 Lec06

#define

•  Often used to define constants
– #define TRUE 1 #define FALSE 0
– #define PI 3.14159
– #define SIZE 20

•  Offers easy one-touch change of scale/size
•  #define vs constants

– The preprocessor directive uses no memory
– #define may not be local

41 Lec06

#define makes it more readable
#include<stdio.h>
#define MILE 1
#define KM 2

void km_mile_conv(int choice) {
 // …
 if (choice == MILE)
 // …
}
int main() {
 // …
 switch (choice) {
 case MILE:
 km_mile_conv(choice);
 break;
 caea KM:
 km_mile_conv(choice);
 break;
 /* more cases */
 }
}

42 Lec06

Longer Macros

•  Use the comma operator to create longer and
more sophisticated macros

•  #define ECHO(c)
 (c=getchar(), putchar(c))
•  Use in program

char c;
while(1)
 ECHO(c);

43 Lec06

Conditional Compiling
•  Debugging (so that you don’t have to remove

all your printf debugging!)

#ifdef DEBUG
 // lots and lots of printfs
#else
 // nothing often omitted
#endif

•  Portability
#ifdef WINDOWS
// code that only works on windows
#endif

44 Lec06

Defining a Macro for #ifdef

•  #define DEBUG
•  #define DEBUG 0
•  #define DEBUG 1
•  The –Dmacro[=def] flag of g++

– g++ –DDEBUG hw1.cpp –o hw1
– g++ –DDEBUG=1 hw1.cpp –o hw1
– g++ –DDEBUG=0 hw1.cpp –o hw1

45 Lec06

#ifndef, #if, #elif, #else
•  #ifndef is the opposite of #ifdef
•  #if DEBUG

–  Test to see if DEBUG is non-zero
–  If using #if, must use #define DEBUG 1
–  Undefined macros are considered to be 0.

•  #elif MACRONAME
#if WINDOWS
 //included if WINDOWS is non-zero
#elif LINUX
 //included if WINDOWS is 0 but LINUX is non-zero
#else
 //if both are 0
#endif

46 Lec06

Predefined Macros

•  Useful macros that primarily provide
information about the current compilation
– __LINE__ Line number of file compiled
– __FILE__ Name of file being compiled
– __DATE__ Date of compilation
– __TIME__ Time of compilation

•  printf("Comipiled on %s at %s.
\n", __DATE__, __TIME__);

47 Lec06

#error

•  #error message
–  prints message to screen
–  often used in conjunction with #ifdef, #else
#if WINDOWS
//…
#elif LINUX
//…
#else
#error OS not specified

#endif

48 Lec06

Program Organization

•  #include and #define first
•  Globals if any
•  Function prototypes, unless included with

header file already
•  int main()– putting your main before all

other functions makes it easier to read
•  The rest of your function definitions

49 Lec06

Math Library Functions

•  Requires an additional header file
#include <math.h>

•  Must compile with additional flag -lm
•  Prototypes in math.h

–  double sqrt(double x);
–  double pow(double x, double p);
–  double log(double x);
–  double sin(double x)
–  double cos(double x)

xp

(natural log, base e)

