
C / C++ and Unix Programming

Materials adapted from Dan Hood and Dianna Xu

1

2

C and Unix Programming

•  Today’s goals
ú  History of C
ú  Basic types
ú  printf
ú  Arithmetic operations, types and casting
ú  Intro to linux

UNIX History
•  The UNIX operating system was born in the late 1960s. It

originally began as a one man project led by Ken
Thompson of Bell Labs, and has since grown to become
the most widely used operating system.

•  In the time since UNIX was first developed, it has gone
through many different generations and even mutations.
ú  Some differ substantially from the original version, like Berkeley

Software Distribution (BSD) or Linux.
ú  Others, still contain major portions that are based on the original

source code.

•  An interesting and rather up-to-date timeline of these
variations of UNIX can be found at

 http://www.levenez.com/unix/history.html.
3

General Characteristics of UNIX as
an Operating System (OS)

•  Multi-user & Multi-tasking - most versions of UNIX are capable of allowing
multiple users to log onto the system, and have each run multiple tasks. This is
standard for most modern OSs.

•  Over 40 Years Old - UNIX is over 40 years old and it's popularity and use is still
high. Over these years, many variations have spawned off and many have died off,
but most modern UNIX systems can be traced back to the original versions. It has
endured the test of time. For reference, Windows at best is half as old (Windows
1.0 was released in the mid 80s, but it was not stable or very complete until the 3.x
family, which was released in the early 90s).

•  Large Number of Applications – there are an enormous amount of applications
available for UNIX operating systems. They range from commercial applications
such as CAD, Maya, WordPerfect, to many free applications.

•  Free Applications and Even a Free Operating System - of all of the applications
available under UNIX, many of them are free. The compilers and interpreters that
we use in most of the programming courses here can be downloaded free of charge.
Most of the development that we do in programming courses is done under the
Linux OS.

•  Less Resource Intensive - in general, most UNIX installations tend to be much
less demanding on system resources. In many cases, the old family computer that
can barely run Windows is more than sufficient to run the latest version of Linux.

•  Internet Development - Much of the backbone of the Internet is run by UNIX
servers. Many of the more general web servers run UNIX with the Apache web
server - another free application.

4

5

The C Language
•  Currently one of the most commonly-used

programming languages
•  “High-level assembly”
•  Small, terse but powerful
•  Very portable:compiler exists for virtually

every processor
•  Produces efficient code
•  It is at once loved and hated

6

History of C

•  Developed during 1969-73 in the bell labs
•  C is a by product of Unix
•  C is mostly credited to
 Dennis Ritchie
•  Evolved from B, which evolved from BCPL

7

History of C
•  Original machine

(DEC PDP-11) was
very small
ú  24k bytes of memory,
ú  12k used for operating

systems

•  When I say small, I
mean memory size,
not actual size.

8

Why is C Dangerous
•  C’s small, unambitious feature set is an

advantage and disadvantage
•  The price of C’s flexibility
•  C does not, in general, try to protect a

programmer from his/her mistakes
•  The International Obfuscated C Code

Contest’s (http://www.ioccc.org/) 1995
winning entry

9

Programming Process
•  Source code must carry extension .c
•  But may be named with any valid Unix file

name
ú  Example: 01-helloworld.c

Lec # description C program

Example program filename convention in this course

10

Example

helloworld.c

/* helloworld.c,
 Displays a message */

#include <stdio.h>

int main() {

 printf(“Hello, world!\n");
 return 0;

}

11

Hello World in C

#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

Preprocessor used to
share information among
source files
Similar to Java’s import

12

Hello World in C
#include <stdio.h>

int main() {
 printf(“Hello, world!\n”);
 return 0;
}

Program mostly a
collection of functions
“main” function special:
the entry point
“int” qualifier indicates
function returns an integer

I/O performed by a library function

13

The Compiler
•  gcc (Gnu C Compiler)
•  gcc –g –Wall helloworld.c –o hw
•  gcc flags

ú  -g (produce debugging info for gdb)
ú  -Wall (print warnings for all events)
ú  -o filename (name output file with filename,

default is a.out)

14

Programming Process Summary

Program (source) file

Object file

Executable file

C standard library

compilation

linking/building

helloworld.c

hw

gcc –g –Wall helloworld.c –o hw

All this is done under Unix

15

C Program Style
•  Case sensitive
•  Ignores blanks
•  Comments

1.  Ignored between /* and */
2.  Comments are integral to good programming!

•  All local variables must be declared in the
beginning of a function !!!

16

Data Types
•  Integer

ú  C keyword: int, short, long
ú  Range: typically 32-bit (±2 billion), 16-bit, 64-bit

•  Floating-point number
ú  C keyword: float, double
ú  Range: 32-bit (± 1038), 64-bit
ú  Examples: 0.67f, 123.45f, 1.2E-6f,
0.67, 123.45, 1.2E-6

In general, use double

17

Variables and Basic Operations
•  Declaration (identify variables and type)

int x;

int y, z;

•  Assignment (value setting)
x = 1;

y = value-returning-expression;

•  Reference (value retrieval)
y = x * 2;

18

Constants
•  Integer

ú  const int year = 2002;

•  Floating point number
ú  const double pi = 3.14159265;

•  Constants are variables whose initial value
can not be changed.

•  Comparable to static final

19

Output Functions
•  Output characters

printf("Text message\n");

•  Output an integer
int x = 100;

printf("Value = %d\n", x);

Output: Value = 100

\n for new line

20

Variations
•  Output a floating-point number

double y = 1.23;

printf("Value = %f\n", y);

•  Output multiple numbers
int x = 100;

double y = 1.23;

printf("x = %d, y = %f\n", x, y);

Output: x = 100, y = 1.230000

15 digits below decimal
(excluding trailing 0’s)

21

printf Summary
printf(" ",);

•  Text containing special symbols
ú  %d for an integer
ú  %f for a floating-point number
ú  \n for a newline

•  List of variables (or expressions)
ú  In the order correspoding to the % sequence

22

Display Problem

•  Problem
ú  Precision of double: 15 digits
ú  Precision of %f: 6 digits below decimal
ú  Cannot show all the significant digits

•  Solution
ú  More flexible display format possible with
printf

23

% Specification

• %i int, char (to show value)
• %d same as above (d for decimal)
• %f double (floating-point)
• %e double (exponential, e.g., 1.5e3)

24

Formatting

•  Precision %.#f
•  Width %#f, %#d

ú  Note: Entire width

•  Zero-padding %0#d
•  Left-justification %-#d
•  Various combinations of the above

Replace #
with digit(s)

25

Formatting Example (1)

%f with 1.23456789 >1.234568<
%.10f with 1.23456789 >1.2345678900<
%.2f with 1.23456789 >1.23<

%d with 12345 >12345<
%10d with 12345 > 12345<
%2d with 12345 >12345<

%f with 1.23456789 >1.234568<
%8.2f with 1.23456789 > 1.23<

26

Formatting Example (2)

%d:%d with 1 and 5 >1:5<
%02d:%02d with 1 and 5 >01:05<

%10d with 12345 > 12345<
%-10d with 12345 >12345 <

11-formatting.c

27

Arithmetic Operators

•  Unary: +, - (signs)

•  Binary: +, -, * (multiplication),
 / (division), % (modulus, int

remainder)

•  Parentheses: (and) must always match.

ú  Good: (x), (x - (y - 1)) % 2

ú  Bad: (x,)x(

28

Types and Casting
•  Choose types carefully
•  An arithmetic operation requires that the

two values are of the same type
•  For an expression that involves two

different types, the compiler will cast the
smaller type to the larger type

•  Example: 4 * 1.5 = 6.0

29

Mixing Data Types

• int values only ⇒ int
ú  4 / 2 ⇒ 2
ú  3 / 2 ⇒ 1
ú  int x = 3, y = 2;
 x / y ⇒ 1

•  Involving a double value ⇒ double
ú  3.0 / 2 ⇒ 1.5

30

Assignment of Values
• int x;

ú  x = 1;
ú  x = 1.5; /* x is 1 */

• double y;
ú  y = 1; /* y is 1.0 */
ú  y = 1.5;
ú  y = 3 / 2; /* y is 1.0 */

int evaluation; warning

warning

31

Example

mixingtypes.c
 int i, j, k, l;
 double f;

 i = 3;
 j = 2;
 k = i / j;
 printf("k = %d\n", k);

 f = 1.5;
 l = f; /* warning */
 printf("l = %d\n", l); /* truncated */

32

• sizeof(type)
ú  The sizeof operator returns the number of bytes

required to store the given type

sizeof and Type Conversions

Implicit conversions
ú  arithmetic
ú  assignment
ú  function parameters
ú  function return type
ú  promotion if possible

Explicit conversions
ú  casting
int x;

x = (int) 4.0;

33

Use of char (character)
•  Basic operations

ú  Declaration: char c;
ú  Assignment: c = 'a';
ú  Reference: c = c + 1;

•  Constants
ú  Single-quoted character (only one)
ú  Special characters: '\n', '\t' (tab),
'\"' (double quote), '\'' (single quote), '\
\' (backslash)

34

•  A char type represents an integer value
from 0 to 255 (1 byte) or –128 to 127.

•  A single quoted character is called a
“character constant”.

•  C characters use ASCII representation:
•  'A' = 65 … 'Z' = 'A' + 25 = 90
•  'a' = 97 … 'z' = 'a' + 25 = 122
•  '0'!= 0 (48), '9' - '0' = 9
•  Never make assumptions of char values

ú  Always write 'A' instead of 65

Characters are Integers

35

ASCII Table
American Standard Code
for Information Interchange
A standard way of
representing the alphabet,
numbers, and symbols
(in computers)

wikipedia on ASCII

36

char Input/Output
•  Input

ú  char getchar() receives/returns a character
ú  Built-in function

•  Output
ú  printf with %c specification

int main() {
 char c;
 c = getchar();
 printf("Character >%c< has the value %d.\n", c, c);
 return 0;
}

chartypes.c

37

scanf Function
scanf(" ",);
•  Format string containing special symbols

ú  %d for int
ú  %f for float
ú  %lf for double
ú  %c for char
ú  \n for a newline

•  List of variables (or expressions)
ú  In the order correspoding to the % sequence

38

scanf Function
•  The function scanf is the input analog of
printf

•  Each variable in the list MUST be prefixed
with an &.

•  Ignores white spaces unless format string
contains %c

39

scanf Function

int main() {
 int x;

 printf("Enter a value:\n");
 scanf("%d", &x);
 printf("The value is %d.\n",
x);
 return 0;
}

40

scanf with multiple variables

int main() {
 int x;
 char c;
 printf("Enter an int and a char:");
 scanf("%d %c", &x, &c);
 printf("The values are %d, %c.\n",
 x, c);
 return 0;
}

scanf.c

41

scanf Function
•  Each variable in the list MUST be prefixed

with an &.
•  Read from standard input (the keyboard)

and tries to match the input with the
specified pattern, one by one.

•  If successful, the variable is updated;
otherwise, no change in the variable.

•  The process stops as soon as scanf
exhausts its format string, or matching fails.

•  Returns the number of successful matches.

42

scanf Continued
•  White space in the format string match any

amount of white space, including none,
in the input.

•  Leftover input characters, if any, including
one ‘\n’ remain in the input buffer, may be
passed onto the next input function.
ú  Use getchar() to consume extra characters
ú  If the next input function is also scanf, it will

ignore ‘\n’ (and any white spaces).

43

scanf Notes
•  Beware of combining scanf and
getchar().

•  Use of multiple specifications can be both
convenient and tricky.
ú  Experiment!

•  Remember to use the return value for error
checking.

44

int main() {
 int choice;
 scanf("%d", &choice); //user input

 if (choice == 1) {
 printf("The choice was 1.\n");
 }
 else {
 printf("The choice wasn't 1.\n");
 }
 return 0;
}

if-else Statement

menu.c

45

Expressions

•  Numeric constants and variables
E.g., 1, 1.23, x

•  Value-returning functions
E.g., getchar()

•  Expressions connected by an operator
E.g., 1 + 2, x * 2, getchar()-1

•  All expressions have a type

46

Boolean Expressions
•  C does not have type boolean

•  False is represented by integer 0

•  Any expression evaluates to non-zero is
considered true

•  True is typically represented by 1 however

47

Conditional Expressions
•  Equality/Inequality

ú  if (x == 1)
ú  if (x != 1)

•  Relation
ú  if (x > 0)
ú  if (x >= 0)
ú  if (x < 0)
ú  if (x <= 0)

== (equality)
= (assignment) ≠

>
≥
<
≤

The values are internally
represented as integer.
true → 1 (not 0), false → 0

48

Assignment as Expression
•  Assignment

ú  Assignments are expressions
ú  Evaluates to value being assigned

•  Example
int x = 1, y = 2, z = 3;

x = (y = z);

3 3 3

 evaluates to 3
if (x = 3) {
 ...
}

evaluates to 3 (true)

49

Complex Condition

•  And
if ((x > 0) && (x <= 10))

•  Or
if ((x > 10) || (x < -10))

•  Negation
if (!(x > 0))

0 < x ≤ 10

⏐x⏐> 10

not (x > 0) ⇔ x ≤ 0

Beware that & and | are also C operators

50

Lazy Logical Operator Evaluation

•  If the conditions are sufficient
to evaluate the entire
expression, the evaluation
terminates at that point => lazy

 •  Examples
ú if ((x > 0) && (x <= 10))

 Terminates if (x > 0) fails
ú if ((x > 10)&&(x < 20))||(x < -10))

 Terminates if (x > 10) && (x < 20) succeeds

51

Use of Braces

if (choice == 1) {
 printf("1\n");
}
else {
 printf("Other\n");
}

When the operation is
a single statement,
'{' and '}' can be omitted.

if (choice == 1)
 printf("1\n");
else
 printf("Other\n");

52

switch Statement

switch (integer expression) {
case constant:
 statements
 break;
case constant:
 statements
 break;
possibly more cases
default:
 statements
}

Multi-branching

53

break Fall Through
•  Omitting break in a switch statement

will cause program control to fall through to
the next case

•  Can be a very convenient feature
•  Also generates very subtle bugs
• switch statements only test equality with

integers

54

Example
int x, y, result = 0; scanf("%d %d", &x, &y);
switch(x) {
 case 1: break;
 case 2:
 case 3: result = 100;
 case 4:
 switch(y) {
 case 5: result += 200; break;
 default: result = -200; break;
 }
 break;
 default: result = 400; break;
}

55

while Loops

while (true) {
 /* some operation */
}

56

while and Character Input
• EOF is a constant defined in stdio.h

ú  Stands for End Of File

int main() {
 int nc = 0, nl = 0; char c;
 while ((c = getchar()) != EOF) {
 nc++;
 if (c == '\n') nl++;
 }
 printf("Number of chars is %d and number of
 lines is %d\n", nc, nl);
 return 0;
}

charloop.c

57

Review:Assignment has value
•  In C, assignment expression has a value,

which is the value of the lefthand side after
assignment.

•  Parens in(c = getchar()) != EOF are
necessary.

•  c = getchar() != EOF is equivalent to
 c = (getchar() != EOF)

•  c gets assigned 0 or 1.

58

Summary
•  C and Java’s conditionals and loops are

very similar
•  C does not support booleans, uses 0 and 1

(not 0) instead
•  Learn how to use scanf and getchar,

especially with input loops
•  Learn how C handles characters
•  Programming style is important!

