
CS246 Lec08

1

CS246 1 Lec08

Today’s Goals

•  Pointers as function arguments
•  Pointers as function return value
•  Arrays in terms of pointers

  Single
  Multi-dimensional
  Pointer arrays

CS246 2 Lec08

The NULL Pointer
•  C guarantees that zero is never a valid

address for data
•  A pointer that contains the address zero

known as the NULL pointer
•  It is often used as a signal for abnormal or

terminal event
•  It is also used as an initialization value for

pointers

Section 1

CS246 3 Lec08

Pass by Value
•  All functions are pass-by-value in C

  A copy is made of each parameter’s value and
then the copy is passed

•  Variables supplied as parameters to a
function call are protected against change
  i.e. impossible to write a swap(x, y)

function
•  Only way to modify a variable through a

function is to assign the return value to that
variable

Section 2

CS246 4 Lec08

Pass by Value and Pointers
•  All functions are pass-by-value in C
•  Pass-by-value sill holds even if the

parameter is a pointer
  A copy of the pointer’s value is made – the

address stored in the pointer variable
  The copy is then a pointer pointing to the same

object as the original parameter
  Thus modifications via de-referencing the copy

STAYS.

CS246 5 Lec08

Function Arguments
• x and y are copies of the original, and thus
a and b can not be altered.

void swap(int x, int y) {
 int tmp;
 tmp = x; x = y; y = tmp;
}

int main() {
 int a = 1, b = 2;

 swap(a, b);
 return 0;
}

Wrong!

CS246 6 Lec08

Pointers and Function Arguments
•  Passing pointers – a and b are passed by

reference (the pointers themselves px and
py are still passed by value)

void swap(int *px, int *py) {
 int tmp;
 tmp = *px; *px = *py; *py = tmp;
}

int main() {
 int a = 1, b = 2;

 swap(&a, &b);
 return 0;
}

px

a 1

py

b 2

CS246 Lec08

2

CS246 7 Lec08

Use Pointers to Modify Multiple
Values in a Function

void decompose(double d, int *i, double *frac) {
 *i = (int) d;
 *frac = d - *i;
}

int main() {
 int int_part;
 double frac_part, input;

 scanf("%lf", &input);
 decompose(input, &int_part, &frac_part);
 printf("%f decomposes to %d and %f\n",
 *int_part, *frac_part);
 return 0;
}

CS246 8 Lec08

Pass by Reference
•  Do not equate pass-by-reference with pass-

by-pointer
•  The pointer variables themselves are still

passed by value
•  The objects being pointed to, however, are

passed by reference
•  In a function, if a pointer argument is de-

referenced, then the modification indirectly
through the pointer will stay

CS246 9 Lec08

Pointers are Passed by Value
void f(int *px, int *py) {
 px = py;
}

int main() {
 int x = 1, y = 2, *px;
 px = &x;
 f(px, &y);
 printf("%d", *px); // will print 1
}

CS246 10 Lec08

Modification of a Pointer
void g(int **ppx, int *py) {
 *ppx = py;
}

int main() {
 int x = 1, y = 2, *px;
 px = &x;
 g(&px, &y);
 printf("%d", *px); // will print 2
}

CS246 11 Lec08

Pointer as Return Value
•  We can also write functions that return a

pointer
•  Thus, the function is returning the memory

address of where the value is stored instead
of the value itself

•  Be very careful not to return an address to a
temporary variable in a function!!!

CS246 12 Lec08

Example
• x and y are copies of the original, and thus

what is &x and &y?
int* max(int *x, int *y) {
 if (*x > *y)
 return x;
 return y;
}

int main() {
 int a = 1, b = 2, *p;

 p = max(&a, &b);
 return 0;
}

int* max(int x, int y) {
 if (x > y)
 return &x;
 return &y;
}

p = max(a, b);

CS246 Lec08

3

CS246 13 Lec08

Arrays

•  Schematic representation

Section 3

element

0 1 2 k-2 k-1 index

•  Declaration – int a[5];
•  Assignment – a[0] = 1;
•  Reference – y = a[0];

a ? ? ? ? ?

a
0 4

? ? ? ? 1

CS246 14 Lec08

Pointers and Arrays
•  Arrays are contiguous

allocations of memory of
the size:
sizeof(elementType)
* numberOfElements

•  Given the address of the
first byte, using the type
(size) of the elements one
can calculate addresses to
access other elements

Memory
70
31
4
6
30
1
10
4
6
31

45
12

0
1
2
3
4
5
6
7
8
9

30
31

address value

array

1
pointer

CS246 15 Lec08

Name of an Array
•  The variable name of an array is also a

pointer to its first element.

•  a == &a[0]
•  a[0] == *a

a:
a[0] a[1] a[8]

a a+1 a+8

CS246 16 Lec08

•  One can add/subtract an integer to/from a
pointer

•  The pointer advances/retreats by that number
of elements (of the type being pointed to)
  a+i == &a[i]
  a[i] == *(a+i)

•  Subtracting two pointers yields the number
of elements between them

CS246 17 Lec08

Multi-Dimensional Array
Section 4

0 1 2 k-2 k-1

0

1

2

second
dimension

first dim
ension

int a[2][3];

a[0][1] = 5;
y = a[0][1];

a ? ? ?
? ? ?

a

0 2
5 ? ?
? ? ?

0
1

1

CS246 18 Lec08

Pointer Arrays: Pointer to Pointers
•  Pointers can be stored in arrays
•  Two-dimensional arrays are just arrays

of pointers to arrays.
  int a[10][20]; int *b[10];
  Declaration for b allows 10 int pointers, with

no space allocated.
  Each of them can point to an array of 20 integers
  int c[20]; b[0] = c;
 What is the type of b?

CS246 Lec08

4

CS246 19 Lec08

Ragged Arrays

CS246 20 Lec08

#define SIZE 10

void init(int a[]) {
 int i;

 for(i = 0;i<SIZE;i++){
 a[i] = 0;
 }
}

int main() {
 int a[SIZE];

 init(a);
 return 0;
}

Arrays as Arguments

/* equivalent pointer alternative */
void init(int *a) {
 int i;

 for(i = 0;i<SIZE;i++){
 *(a+i) = 0;
 }
}

Section 5

•  Arrays are passed
by reference

•  Modifications stay

CS246 21 Lec08

Combining * and ++/--
• ++ and -- has precedence over *

  a[i++] = j;
  p=a; *p++ = j; <==> *(p++) = j;

  *p++; value: *p, inc: p
  (*p)++; value: *p, inc: *p
  ++(*p); value: (*p)+1, inc: *p
  *++p; value: *(p+1), inc: p

CS246 22 Lec08

Summary

•  Understand the relationship between arrays
and pointers

•  Understand the relationship between two-
dimensional arrays and pointer arrays

•  Arrays are passed by reference to functions
•  Pointer arithmetic is powerful but

dangerous!

