

Getting started on the Surface

Doug Blank
Bryn Mawr College

Programming Paradigms
Spring 2010

parts based on Microsoft tutorials

Two Layers

● Core Layer
● Use under any GUI toolkit

– 2D
– 3D (high-performance graphics)
– XNA, Game Development (for Xbox, Zune, Windows)

● Based on HWND “window handles”

● Presentation Layer
● Built on top of WPF

Visual Studio

● To start the Visual Studio project
● Install the Microsoft Surface SDK
● Open Visual C# 2008 (or Microsoft Visual Studio

2008)
● On the File menu, click New
● Click Project, expand Visual C#, expand Surface,

and then click v1.0
● In the Templates pane, under Visual Studio

installed templates, click Surface Application (WPF)

Hello World

Editing the Program

● XAML
● Extensible Application Markup Language
● “user interface control language”
● Elements are CLR objects
● Attributes are properties and events

● C# code

Edit the XAML file

● Open the SurfaceWindow1.xaml file (the XAML
file is located in the Solution Explorer window,
within the HelloWorld node)

● Edit SurfaceWindow1.xaml to add controls or
elements to the application

● Change the Grid to a Canvas. The
SurfaceWindow element can have only one
primary child element, and the Canvas element
enables you to position child elements exactly.

● Add a ContactDown attribute to the Canvas
element in the XAML file.

Edit the XAML file, cont

● Type s:Contacts.ContactDown="" and press ENTER to accept the default
event name "Canvas_ContactDown" and the event method shell is added to
the C# file for you.

● Add a Label element as a child of the Canvas element.

● Add Name="helloWorldLabel" as an attribute on the Label element so you
can access the Label element by name in the C# code.

● Add Visibility="Hidden" as an attribute in the Label element to specify that
the Label element is initially hidden when the SurfaceWindow is started.

● The Label element will appear for the first time when the first Surface
contact is made.

● Add Hello, World! between the Label start and end tags to initialize the Label
element with text.

Edit the XAML file, cont

Edit the C# code

● In Solution Explorer, expand the
SurfaceWindow1.xaml node, and then open the
SurfaceWindow1.xaml.cs file created by the
WPF template.

● Add an OnCanvasContactDown event handler
method to the Window1 class that is defined in
the SurfaceWindow1.xaml.cs file.

● Add code to the OnCanvasContactDown event
handler so that the label appears at the point of
contact every time that a contact touches the
Microsoft Surface screen.

Edit the C# code, cont

#region OnCanvasContactDown
private void OnCanvasContactDown(object sender, ContactEventArgs e)
{
 // Get the position of the current contact.
 Point contactPosition = e.Contact.GetPosition(this);

 // Set the X and Y position of HelloWorldLabel
 // in relation to the canvas.
 Canvas.SetLeft(HelloWorldLabel, contactPosition.X);
 Canvas.SetTop(HelloWorldLabel, contactPosition.Y);

 // Make the label visible.
 HelloWorldLabel.Visibility = Visibility.Visible;
}
#endregion

Double-click the SurfaceInput icon on the desktop. If
SurfaceInput is not running, your application will not receive
Contact events. If you are running on a separate computer,

start Surface Simulator from the Start menu. Surface
Simulator starts SurfaceInput when it is launched.

The last step is to build your project by pressing the F5 key.
When you touch the Microsoft Surface screen, or click the

mouse inside the Surface Simulator window, a Label appears
and displays "Hello, World!"

Running the Application

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

