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1 Predicates and Quantifiers

We have seen how to represent properties of objects. For example, B(x) may represent that x is a
student at Bryn Mawr College. Here B stands for “is a student at Bryn Mawr College” and x is a free
variable that may be true for some values of x and false for others. As another example, if we want to
express “x is a friend of y”, we could use F (x, y) where F stand for “is a friend of” and both x and y
are free variables. In these two examples, B and F are called predicate symbols and x and y are called
predicate variables. A predicate is a predicate symbol together with suitable predicate variables.

Definition 1 A predicate is a sentence that contains a finite number of variables and becomes a state-
ment when specific values are substituted for the variables. The domain of a predicate variable is the
set of all values that may be substituted in place of the variable.

Sometimes we would like to express whether a predicate P (x) is true for all values of x or some
values of x. To express these ideas, we introduce two symbols, called quantifiers.

• Universal quantifier ∀: To say that the predicate P (x) is true for all possible valuse of x, we write
∀xP (x), which is read “For all x, P (x)”.

• Existential quantifier ∃: To say that there exists or there is at least one value of x in the universe
for which the predicate P (x) is true, we use ∃xP (x) and read “there exists an x such that P (x)”.
The statement ∃xP (x) is true means that the truth set is not equal to ∅.

For example, if we want to express “All human beings are mortal”, using the predicate M(x) to
denote “human being x is mortal and H being the set of all human beings, then we write ∀x ∈ H,M(x).
The statement ∀x ∈ U,P (x) is true when the truth set of P (x) is the whole universe U .

Example 1 What do the following formulas mean? Are they true or false?

1. ∀x(x2 ≥ 0), where the universe of discourse is R, the set of all real numbers.

2. ∃x(M(x) ∧ B(x)), where the universe of discourse is the set of all people, M(x) stands for the
statement “x is a man,” and B(x) means “x has brown hair.”

3. ∀x(M(x)→ B(x)), with the same universe and the same meanings for M(x) and B(x).

4. ∀xL(x, y), where the universe is the set of all people, and L(x, y) means “x likes y.”

Note that in the statement ∀xL(x, y), variable x is a bound variable and y is free. In general,
even if x is a free variable in some statement P (x), it is a bound variable in the statements ∀xP (x) and
∃xP (x). Because of this, we say that quantifiers bind variables. Recall that a bound variable can always
be replaced with a new variable without changing the meaning of the statement. Therefore ∀xL(x, y) is
equivalent to ∀zL(z, y). Both mean that everyone likes y. Words all, every, every one, and everything
are usually an indication of using the universal quantifier ∀, and words someone, exist, and something
usually indicate that the existantial quantifier ∃ needs to be used.

Example 2 Analyze the logical forms of the following statements.

1. Someone didn’t do the homework.

2. Everything in that store is either overpriced or poorly made.
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3. Susan likes everyone who dislikes Joe.

4. A ⊆ B.

Example 3 Analyze the logical forms of the following statements.

1. Some students are married.

2. All parents are married.

3. Nobody likes a sore loser.

4. If a person in the dorm has a friend who has the measles, then everyone in the dorm will have to
be quarantined.

Exercise 1 Analyze the logical forms of the following statements.

1. Nobody’s perfect.

2. A ∩B ⊆ B \ C.

3. If A ⊆ B, then A and C \ B are disjoint. Two sets are said to be disjoint if, and only if, they
have no elements in common. Symbolically, S1 and S2 are disjoint iff S1 ∩ S2 = ∅.

Example 4 What do the following statements mean? Are they true or false? The universe of discourse
in each case is R, the set of all real numbers.

1. ∀x∃y(x + y = 3)

2. ∃y∀x(x + y = 3)

Example 5 What do the following statements mean? Are they true or false? The universe of discourse
in each case is N, the set of all natural numbers.

1. ∀x∃y(x < y)

2. ∃y∀x(x < y)

3. ∃x∀y(x < y)

4. ∀y∃x(x < y)

5. ∃x∃y(x < y)

6. ∀x∀y(x < y)
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2 Equivalence Involving Quantifiers

Quantifier Negation laws

¬∃xP (x) is equivalent to ∀x¬P (x)
¬∀xP (x) is equivalent to ∃x¬P (x)

Example 6 Negate these statements and then reexpress the results as equivalent positive statements.

1. A ⊆ B.

2. Every student has a course he took and he doesn’t like.

Necessary and Sufficient Conditions, Only If

∀x, r(x) is a sufficient condition for s(x) means “∀x, if r(x) then s(x)”
∀x, r(x) is a necessary condition for s(x) means “∀x, if not r(x) then not s(x)”,

or, equivalently, “∀x, if s(x) then r(x)”
∀x, r(x) only if s(x) means “∀x, if not s(x) then not r(x)”,

or, equivalently, “∀x, if r(x) then s(x)”

Example 7 Rewrite the following statements as quantified conditional statements. Do not use the word
necessary or sufficient.

1. Squareness is a sufficient condition for rectangularity.

2. Being at least 35 years old is a necessary condition for being President of the United States.

We have seen from Example 1 that changing the order of two quantifiers can sometimes change the
meaning of a statement. However, if the quantifiers are both ∀ or both ∃, then the order can always be
switched without affecting the meaning of the statement.

Example 8 Analyze the logical forms of the following statements.

1. All friends like each other.

2. Everyone likes at least two people.

3. James likes exactly one person.

In general, for any set A, statement ∀x ∈ AP (x) means that for every value of x in the set A, P (x) is
true. Statement ∃x ∈ AP (x) means that there is some value of x that is in A and that also makes P (x)
to be true. Therefore, ∀x ∈ AP (x) is equivalent to ∀x(x ∈ A → P (x)), and ∃x ∈ AP (x) is equivalent
to ∃x(x ∈ A ∧ P (x)).

Formal Logical Notation

“∀x in A,P (x)” can be written as “∀x(x ∈ A→ P (x))”
“∃x in A such that P (x)” can be written as “∃x(x ∈ A ∧ P (x))”
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Note that if A = ∅, then ∃x ∈ AP (x) is false no matter what P stands for. What about ∀x ∈ AP (x)?
Is it true?

∀x ∈ AP (x)

is equivalent to ¬¬∀x ∈ AP (x) Double Negation law

is equivalent to ¬∃x ∈ A¬P (x) by Quantifier Negation law

If A = ∅, then ∃x ∈ A¬P (x) must be false, and so ¬∃x ∈ A¬P (x) must be true. Therefore, ∀x ∈ AP (x)
must true. Also note that since ∀x ∈ AP (x) is equivalent to ∀x(x ∈ A → P (x)), if A = ∅, x ∈ A is
always false, and so the implication is always true. Such a statement is often said vacuously true.

As another note: universal quantifier distributes over conjunction. That is, ∀x(P (x)∧Q(x)) is equiv-
alent to ∀xP (x)∧∀xQ(x). Why? However, existential quantifier does not distributes over conjunction.
In other words, ∃x(P (x) ∧Q(x)) is not equivalent to ∃xP (x) ∧ ∃xQ(x). Why?

As an example of the distributive law for the universal quantifier and conjunction, let’s consider the
equation A = B where A and B are two sets. The equation A = B means ∀x(x ∈ A↔ x ∈ B), and so

∀x(x ∈ A↔ x ∈ B)

is equivalent to ∀x[(x ∈ A→ x ∈ B) ∧ (x ∈ B → x ∈ A)] Def of Biconditional

is equivalent to ∀x(x ∈ A→ x ∈ B) ∧ ∀x(x ∈ B → x ∈ A) Distributive law

is equivalent to A ⊆ B ∧B ⊆ A Def of subset

Example 9 Analyze the logical forms of the following statements where the universe of discourse is N.

1. x is a perfect square.

2. x is the smallest number that is a multiple of both y and z.

Exercise 2 Analyze the logical form of the statement “Every positive number has exactly two square
roots”. The universe of discourse is R.

Exercise 3 Show that the statements A ⊆ B and A \ B = ∅ are equivalent by writing each in logical
symbols and then showing that the resulting formulas are equivalent.

3 More on Sets

3.1 Elementhood Test Notation and Logical Statements

We have seen the elementhood test notation for defining a set. For example, the set of all perfect squares
can be written as S = {n2 |n ∈ N}. This also can be written as {x | ∃n ∈ N(x = n2)}. Therefore, the
logical statement x ∈ {n2 |n ∈ N} means the same thing as ∃n ∈ N(x = n2).

Example 10 Analyze the logical forms of the following statements.

1. y ∈ { 3
√
x |x ∈ Q}.

2. {n2 |n ∈ N} and {n3 |n ∈ N} are not disjoint.
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3.2 Power Set

Definition 2 (power set) Suppose that A is a set. The power set of A, denoted P(A), is the set
whose elements are all the subsets of A. In other words, P(A) = {x |x ⊆ A}.

For example, the set A = {1, 2} has four subsets: ∅, {1}, {2}, and {1, 2}. Therefore, P(A) =
{∅, {1}, {2}, {1, 2}}.
Why is ∅ a subset of any set?
What is P(∅)?

Example 11 Analyze the logical forms of the following statements.

1. x ∈ P(A).

2. P(A) ⊆ P(B).

3. x ∈ P(A ∩B).

4. x ∈ P(A) ∩ P(B).

3.3 Cartesian Products

Definition 3 Let n be a positive integer and let x1, x2, ..., xn be (not necessarily distinct) elements. The
ordered n-tuple, (x1, x2, ..., xn), consists of x1, x2, ..., xn together with the ordering: first x1, then x2,
and so forth up to xn. An ordered 2-tuple is called an ordered pair, and an ordered 3-tuple is called an
ordered triple.

Two ordered n-tuple (x1, x2, ..., xn) and (y1, y2, ..., yn) are equal if, and only if, x1 = y1, x2 =
y2, ..., xn = yn.

Symbolically:

(x1, x2, ..., xn) = (y1, y2, ..., yn)↔ x1 = y1, x2 = y2, ..., xn = yn.

In particular, (a, b) = (c, d)↔ a = c and b = d.

For example, (1, 2, 3, 4) 6= (1, 3, 2, 4) and (3, (−2)2,
1

2
) = (

√
9, 4,

3

6
).

Definition 4 Given sets A1, A2, ..., An, the Cartesian product of A1, A2, ..., An denoted A1×A2×...×An,
is the set of all ordered n-tuples (a1, a2, ..., an) where a1 ∈ A1, a2 ∈ A2, ..., an ∈ An.

Symbolically:

A1 ×A2 × ...×An = {(a1, a2, ..., an) | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}.

In particular,
A1 ×A2 = {(a1, a2) | a1 ∈ A1, a2 ∈ A2}

is the Cartesian product of A1 and A2.

Example 12 Let A1 = {x, y}, A2 = {1, 2, 3}, andA3 = {a, b}.

1. Find A1 ×A2.

2. Find (A1 ×A2)×A3.

3. Find A1 ×A2 ×A3.
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4 Set Identities

Recall that in Propositional Logic, we have the following logical equivalences.
Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical
equivalences hold.

Commutative laws: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associative laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Identity laws: p ∧ t ≡ p p ∨ c ≡ p
Negation laws: p ∨ ¬p ≡ t p ∧ ¬p ≡ c
Double negative law: ¬(¬p) ≡ p
Idempotent laws: p ∧ p ≡ p p ∨ p ≡ p
Universal bound laws: p ∨ t ≡ t p ∧ c ≡ c
De Morgan’s laws: ¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q
Absorption laws: p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p
Negations of t and c: ¬t ≡ c ¬t ≡ c

In Set Theory, we have set identities which are equations universally true for all elements in some
set.

Theorem 1 (Set Identities) Let the universal set be U . For every set A ⊆ U , set B ⊆ U , and set
C ⊆ U ,

Commutative laws: A ∪B = B ∪A A ∩B = B ∩A
Associative laws: (A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)
Distributive laws: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
Identity laws: A ∪∅ = A A ∩ U = A
Complement laws: A ∪Ac = U A ∩Ac = ∅
Double Complement law: (Ac)c = A
Idempotent laws: A ∪A = A A ∩A = A
Universal bound laws: A ∪ U = U A ∩∅ = ∅
De Morgan’s laws: (A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc

Absorption laws: A ∪ (A ∩B) = A A ∩ (A ∪B) = A
Complements of U and ∅: U c = ∅ ∅c = U
Set Difference Law: A \B = A ∩Bc

With set identities, we can prove some set properties algebraically (Section 6.3).

Example 13 Construct an algebraic proof that for all sets A and B, A \ (A ∩B) = A \B.

5 Proof Involving Quantifiers

How to prove a goal of the form ∀xP (x)? If your proof works no matter what x was, then you can
conclude that ∀xP (x) is true. This means that your proof should work for any value of x. Thus, you
should start your proof without any assumption about x.
Strategy 1 (for all): (a) To prove a goal of the form ∀xP (x), let x be an arbitrary object and prove
P (x). The letter x must be a new variable in the proof. If x is already being used in the proof to stand
for something, then you must choose an unused variable, say y, to stand for the arbitrary object, and
prove P (y). (b) To use a given assumption of the form ∀xP (x), plug in any value, say m, for x and use
this assumption to conclude that P (m) is true. This rule is called universal instantiation.

6



Predicate Logic CS/Math231 Discrete Mathematics Spring 2015

Form of the Proof

Let x be arbitrary.
[Proof of P (x) goes here]

Since x was arbitrary, we can conclude that ∀xP (x).

Example 14 Suppose A,B, and C are sets, and A \B ⊆ C. Prove that A \ C ⊆ B.
Proof sketch.
Given: A \B ⊆ C
Goal: A \ C ⊆ B
Analyze the logical form of the goal: ∀x(x ∈ A \ C → x ∈ B)
Let x be arbitrary.
New Goal: x ∈ A \ C → x ∈ B

Let x be arbitrary.
[Proof of x ∈ A \ C → x ∈ B goes here]

Since x was arbitrary, we can conclude that ∀x(x ∈ A \ C → x ∈ B), so A \ C ⊆ B.

The main advantage of using this strategy to prove a goal of the form ∀xP (x) is to prove a goal
about all objects by reasoning about only one object, as long as that object is arbitrarily chosen.

Example 15 Suppose A and B are sets. Prove that if A ∩B = A then A ⊆ B.
Proof sketch.
Given: A ∩B = A
Goal: ∀x(x ∈ A→ x ∈ B)
Given: A ∩B = A, x ∈ A
Goal: x ∈ B

Suppose that A ∩B = A.
Let x be arbitrary.

Suppose that x ∈ A.
[Proof of x ∈ B goes here]

Therefore x ∈ A→ x ∈ B.
Since x was arbitrary, we can conclude that ∀x(x ∈ A→ x ∈ B), so A ⊆ B.

Therefore, if A ∩B = A, then A ⊆ B.

When we write up the final proof we can skip some or all of the last three sentences.

Strategy 2 (exists): (a) To prove a goal of the form ∃xP (x), we need to find a value of x where P (x)
is true. Let x be the value we decide and show that P (x) is true for this value. Same as in the case
of ∀xP (x), x should be a new variable. If necessary, rename x into some unused variable, say y, and
rewrite the goal in the equivalent form ∃yP (y). (b) To use a given assumption if the form ∃xP (x), we
introduce a new variable, say x0, to stand for an object for which P (x0) is true. Now assume that P (x0)
is true and use this as an assumption. This rule is called existential instantiation.

Form of the Proof

Let x = the value we decide. .
[Proof of P (x) goes here]

Therefore, ∃xP (x).
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Example 16 Prove that for every real number x, if x > 0 then there is a real number y such that
y(y + 1) = x.
Proof sketch.
Goal: ∀x(x > 0→ ∃y[y(y + 1) = x])
Let x be an arbitrary number
Given: x > 0
Goal: ∃y[y(y + 1) = x]
We need to find a value of y such that y(y + 1) = x.

Solve the quadratic equation:

Recall that the roots of a quadratic equation ax2 + bx + c = 0 can be obtained by using Quadratic

Formula: x =
−b±

√
b2 − 4ac

2a
.

Definition 5 (Divisible) If n and d are integers and d 6= 0 then
n is divisible by d if, and only if, n equals d times some integer.

Instead of “n is divisible by d”, we can say that
n is a multiple of d, or
d is a factor of n, or
d is a divisor of n, or
d divides n.
The notation d|n is read “d divides n.” Symbolically, if n and d are integers and d 6= 0:

d|n iff ∃k ∈ Z such that n = dk.

For example, 4|20, since 5× 4 = 20.
Remark. When does d not divide n? An integer d does not divide n, denoted by d 6 |n, if and only if,
for every integer k, n 6= dk, or, in other words, the quotient n/d is not an integer.

Does k divides 0 where k is any nonzero integer?

Example 17 (Transitivity of Divisibility) For all integers a, b, and c, if a|b and b|c, then a|c.

Definition 6 (Prime and Composite) An integer n is prime if, and only if, n > 1 and for all
positive integers r and s, if n = rs, then either r or s equals n. An integer n is composite if, and only
if, n > 1 and n = rs for some integers r and s with 1 < r < n and 1 < s < n.

Is every integer greater than 1 either prime or composite?

Example 18 (Divisibility by a Prime) Prove that any integer n > 1 is divisible by a prime number.

Example 19 Is the following statement true or false? For all integers a and b, if a|b and b|a then
a = b.

Theorem 2 (Unique Factorization of Integers Theorem (Fundamental Theorem of Arithmetic))
Given any integer n > 1, there exist a positive integer k, distinct prime numbers p1, p2, ..., pk, and pos-
itive integers e1, e2, ..., ek such that

n = pe11 pe22 pe33 · · · p
ek
k ,

and any other expression for n as a product of prime numbers is identical to this except, perhaps, for
the order in which the factors are written.
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Definition 7 Given any integer n > 1, the standard factored form of n is an expression of the form

n = pe11 pe22 pe33 · · · p
ek
k ,

where k is a positive integer; p1, p2, ..., pk are prime numbers; e1, e2, ..., ek are positive integers; and
p1 < p2 < · · · < pk.

Example 20 Suppose m is an integer such that

8 · 7 · 6 · 5 · 4 · 3 · 2 ·m = 17 · 16 · 15 · 14 · 13 · 12 · 11 · 10.

Does 17|m?

Theorem 3 (The Quotient-Remainder Theorem) Given any integer n and positive integer d,
there exist unique integers q and r such that

n = dq + r and 0 ≤ r < d.

Definition 8 (div and mod) Given an integer n and a positive integer d,

n div d = the integer quotient obtained when n is divided by d
n mod d = the nonnegative integer remainder obtained when n is divided by d.

Symbolically, if n and d are integers and d > 0, then

n div d = q and n mod d = r ↔ n = dq + r

where q and r are integers and 0 ≤ r < d.

Definition 9 (Parity) The parity of an integer refers to whether the integer is even or odd. We call
the fact that any integer is either even or odd the parity property.

Example 21 Prove that the square of any odd integer has the form 8m + 1 for some integer m.

Definition 10 (mutually disjoint) Sets A1, A2, A3, ... are mutually disjoint (or pairwise disjoint
or nonoverlapping) if, and only if, no two sets Ai and Aj have any elements in common, where i 6= j.
Symbolically, for all i, j = 1, 2, 3, ..., Ai ∩Aj = ∅ whenever i 6= j.

Definition 11 (partition) A finite or infinite collection of nonempty sets {A1, A2, A3...} is a partition
of a set A if, and only if,

1. A is the union of all the Ai

2. The set A1, A2, A3, ... are mutually disjoint.

Example 22 Let Z be the set of all integers and let

• T0 = {n ∈ Z |n = 3k, for some integer k},

• T1 = {n ∈ Z |n = 3k + 1, for some integer k}, and

• T2 = {n ∈ Z |n = 3k + 2, for some integer k}.

Is {T0, T1, T2} a partition of Z?
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Definition 12 For any real number x, the absolute value of x, denoted |x|, is defined as follows:

|x| =

{
x if x ≥ 0

−x if x < 0.

Lemma 1 For all real numbers r, −|r| ≤ r ≤ |r|.

Lemma 2 For all real numbers r, | − r| = |r|.

Example 23 (The Triangle Inequality) Prove that for all real numbers x and y, |x+ y| ≤ |x|+ |y|.

More examples on how to apply these strategies will be given when we learn predicate logic.
Sometimes when proving a biconditional P ↔ Q, the steps for proving P → Q is same as the steps

for proving Q→ P in a reversed order. In this case, we could simplify the proof by writing it as a string
of equivalences, starting with P and ending with Q.

Example 24 Suppose A,B, and C are sets. Prove that A ∩ (B \ C) = (A ∩B) \ C.
Proof Sketch.
x ∈ A ∩ (B \ C) iff x ∈ A ∧ x ∈ B \ C iff x ∈ A ∧ x ∈ B ∧ x /∈ C;
x ∈ (A ∩B) \ C iff x ∈ A ∩B ∧ x /∈ C iff x ∈ A ∧ x ∈ B ∧ x /∈ C.

Proof by cases is one of the strategies we discussed before when a given asumption is of the form
P ∨Q.

Example 25 Suppose that A,B, and C are sets. Prove that if A ⊆ C and B ⊆ C then A ∪B ⊆ C.
Proof Sketch.
Given: A ⊆ C, B ⊆ C
Goal: ∀x(x ∈ A ∪B → x ∈ C)
Let x be arbitrary and assume that x ∈ A ∪B
Given: A ⊆ C, B ⊆ C, x ∈ A ∨ x ∈ B
Goal: x ∈ C
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