
CMSC 206

Dictionaries and Hashing

2

The Dictionary ADT

n  a dictionary (table) is an abstract model of a
database or lookup table

n  like a priority queue, a dictionary stores key-
element pairs

n  the main operation supported by a dictionary
is searching by key

3

Examples

n  Telephone directory
n  Library catalogue
n  Books in print: key ISBN
n  FAT (File Allocation Table)

4

The Dictionary ADT

n  simple container methods:
q  size()
q  isEmpty()
q  iterator()

n  query methods:
q  get(key)
q  getAllElements(key)

5

The Dictionary ADT

n  update methods:
q  insert(key, element)
q  remove(key)
q  removeAllElements(key)

n  special element
q  NO_SUCH_KEY, returned by an unsuccessful

search

6

The Basic Problem

n  We have lots of data to store.

n  We desire efficient – O(1) – performance for
insertion, deletion and searching.

n  Too much (wasted) memory is required if we
use an array indexed by the data’s key.

n  The solution is a “hash table”.

7

Hash Table

n  Basic Idea
q  The hash table is an array of size ‘m’
q  The storage index for an item determined by a hash

function h(k): U → {0, 1, …, m-1}
n  Desired Properties of h(k)

q  easy to compute
q  uniform distribution of keys over {0, 1, …, m-1}

n  when h(k1) = h(k2) for k1, k2 ∈ U , we have a collision

0 1 2 m-1

8

Division Method
n  The hash function:

 h(k) = k mod m where m is the table size.
n  m must be chosen to spread keys evenly.

q  Poor choice: m = a power of 10
q  Poor choice: m = 2b, b> 1

n  A good choice of m is a prime number.
n  Table should be no more than 80% full.

q  Choose m as smallest prime number greater than
mmin, where
mmin = (expected number of entries)/0.8

9

Multiplication Method
n  The hash function:

 h(k) = ⎣ m(kA - ⎣ kA ⎦) ⎦
 where A is some real positive constant.

n  A very good choice of A is the inverse of the
“golden ratio.”

n  Given two positive numbers x and y, the ratio
x/y is the “golden ratio” if φ = x/y = (x+y)/x

n  The golden ratio:
x2 - xy - y2 = 0 ⇒ φ2 - φ - 1 = 0
φ = (1 + sqrt(5))/2 = 1.618033989…

 ~= Fibi/Fibi-1

10

Multiplication Method (cont.)
n  Because of the relationship of the golden ratio to

Fibonacci numbers, this particular value of A in the
multiplication method is called “Fibonacci hashing.”

n  Some values of
 h(k) = ⎣m(k φ-1 - ⎣k φ-1 ⎦)⎦
 = 0 for k = 0
 = 0.618m for k = 1 (φ-1 = 1/ 1.618… = 0.618…)
 = 0.236m for k = 2
 = 0.854m for k = 3

 = 0.472m for k = 4
 = 0.090m for k = 5
 = 0.708m for k = 6
 = 0.326m for k = 7
 = …
 = 0.777m for k = 32

11

12

Non-integer Keys

n  In order to have a non-integer key, must first
convert to a positive integer:
 h(k) = g(f(k)) with f: U → integer
 g: I → {0 .. m-1}

n  Suppose the keys are strings.
n  How can we convert a string (or characters)

into an integer value?

13

Horner’s Rule

static int hash(String key, int tableSize)
{
 int hashVal = 0;

 for (int i = 0; i < key.length(); i++)
 hashVal = 37 * hashVal + key.charAt(i);

 hashVal %= tableSize;
 if(hashVal < 0)
 hashVal += tableSize;

return hashVal;

}

14

n  A. Aho, J. Hopcroft, J. Ullman, “Data Structures and
Algorithms”, 1983, Addison-Wesley.

‘A’ = 65 ‘h’ = 104 ‘o’ = 111

value = (65 + 31 * 0) % 101 = 65

value = (104 + 31 * 65) % 101 = 99

value = (111 + 31 * 99) % 101 = 49

Example:
value = (s[i] + 31*value) % 101;

15

 resulting
table is

“sparse”

Example:
value = (s[i] + 31*value) % 101;

 Hash
Key Value

Aho 49
Kruse 95
Standish 60
Horowitz 28
Langsam 21
Sedgewick 24
Knuth 44

16

value = (s[i] + 1024*value) % 128;

Example:

likely to
result in

“clustering”

 Hash
Key Value
Aho 111
Kruse 101
Standish 104
Horowitz 122
Langsam 109
Sedgewick 107
Knuth 104

17

Example:

“collisions”

value = (s[i] + 3*value) % 7;

 Hash
Key Value

Aho 0
Kruse 5
Standish 1
Horowitz 5
Langsam 5
Sedgewick 2
Knuth 1

18

HashTable Class
public class SeparateChainingHashTable<AnyType>
{

 public SeparateChainingHashTable(){/* Later */}

 public SeparateChainingHashTable(int size){/*Later*/}

 public void insert(AnyType x){ /*Later*/ }

 public void remove(AnyType x){ /*Later*/}

 public boolean contains(AnyType x){/*Later */}

 public void makeEmpty(){ /* Later */ }

 private static final int DEFAULT_TABLE_SIZE = 101;
 private List<AnyType> [] theLists;

 private int currentSize;

 private void rehash(){ /* Later */ }

 private int myhash(AnyType x){ /* Later */ }

 private static int nextPrime(int n){ /* Later */ }

 private static boolean isPrime(int n){ /* Later */ }

}

19

HashTable Ops

n  boolean contains(AnyType x)
q  Returns true if x is present in the table.

n  void insert (AnyType x)
q  If x already in table, do nothing.
q  Otherwise, insert it, using the appropriate hash

function.
n  void remove (AnyType x)

q  Remove the instance of x, if x is present.
q  Ptherwise, does nothing

n  void makeEmpty()

20

Hash Methods

 private int myhash(AnyType x)

 {
 int hashVal = x.hashCode();

 hashVal %= theLists.length;
 if(hashVal < 0)

 hashVal += theLists.length;

 return hashVal;
 }

21

Handling Collisions
n  Collisions are inevitable. How to handle

them?
n  Separate chaining hash tables

q  Store colliding items in a list.
q  If m is large enough, list lengths are small.

n  Insertion of key k
q  hash(k) to find the proper list.
q  If k is in that list, do nothing, else insert k on that list.

n  Asymptotic performance
q  If always inserted at head of list, and no duplicates,

insert = O(1) for best, worst and average cases

22

Hash Class for Separate Chaining

n  To implement separate chaining, the private
data of the hash table is an array of Lists.
The hash functions are written using List
functions

 private List<AnyType> [] theLists;

23

Chaining

0

1

2

3

4

24

Performance of contains()

n  contains
q  Hash k to find the proper list.
q  Call contains() on that list which returns a

boolean.
n  Performance

q  best:

q  worst:

q  average

25

Performance of remove()

n  Remove k from table
q  Hash k to find proper list.
q  Remove k from list.

n  Performance
q  best

q  worst

q  average

26

Handling Collisions Revisited
n  Probing hash tables

q  All elements stored in the table itself (so table should be
large. Rule of thumb: m >= 2N)

q  Upon collision, item is hashed to a new (open) slot.

n  Hash function
h: U x {0,1,2,….} → {0,1,…,m-1}
h(k, i) = (h’(k) + f(i)) mod m

 for some h’: U → { 0, 1,…, m-1}
 and some f(i) such that f(0) = 0

n  Each attempt to find an open slot (i.e.
calculating h(k, i)) is called a probe

27

HashEntry Class for Probing Hash Tables

n  In this case, the hash table is just an array

 private static class HashEntry<AnyType>{
 public AnyType element; // the element
 public boolean isActive; // false if deleted
 public HashEntry(AnyType e)
 { this(e, true); }
 public HashEntry(AnyType e, boolean active)
 { element = e; isActive = active; }
 }
 // The array of elements
 private HashEntry<AnyType> [] array;
 // The number of occupied cells
 private int currentSize;

28

Linear Probing

n  Use a linear function for f(i)
 f(i) = c * i

n  Example:
 h’(k) = k mod 10 in a table of size 10 , f(i) = i

So that
 h(k, i) = (k mod 10 + i) mod 10

 Insert the values U={89,18,49,58,69} into the hash
table

29

Linear Probing (cont.)

n  Problem: Clustering
q  When the table starts to fill up, performance → O

(N)

n  Asymptotic Performance
q  Insertion and unsuccessful find, average

n  λ is the “load factor” – what fraction of the table is used
n  Number of probes ≅ (½) (1+1/(1-λ)2)
n  if λ ≅ 1, the denominator goes to zero and the number of

probes goes to infinity

30

Linear Probing (cont.)

n  Remove
q  Can’t just use the hash function(s) to find the

object and remove it, because objects that were
inserted after X were hashed based on X’s
presence.

q  Can just mark the cell as deleted so it won’t be
found anymore.
n  Other elements still in right cells
n  Table can fill with lots of deleted junk

31

Linear Probing Example

n  h(k) = k mod 13
n  Insert keys:
n  18 41 22 44 59 32 31 73

 0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 72

 0 1 2 3 4 5 6 7 8 9 10 11 12

32

Quadratic Probing

n  Use a quadratic function for f(i)
 f(i) = c2i2 + c1i + c0
 The simplest quadratic function is f(i) = i2

n  Example:
 Let f(i) = i2 and m = 10
 Let h’(k) = k mod 10
 So that
 h(k, i) = (k mod 10 + i2) mod 10
 Insert the value U={89, 18, 49, 58, 69 } into an
initially empty hash table

33

Quadratic Probing (cont.)

n  Advantage:
q  Reduced clustering problem

n  Disadvantages:
q  Reduced number of sequences
q  No guarantee that empty slot will be found if
λ ≥ 0.5, even if m is prime

q  If m is not prime, may not find an empty slot
even if λ < 0.5

34

Double Hashing
n  Let f(i) use another hash function

 f(i) = i * h2(k)
 Then h(k, I) = (h’(k) + i * h2(k)) mod m
 And probes are performed at distances of
 h2(k), 2 * h2(k), 3 * h2(k), 4 * h2(k), etc

n  Choosing h2(k)
q  Don’t allow h2(k) = 0 for any k.
q  A good choice:

h2(k) = R - (k mod R) with R a prime smaller than m

n  Characteristics
q  No clustering problem
q  Requires a second hash function

36

Rehashing

n  If the table gets too full, the running time of the basic
operations starts to degrade.

n  For hash tables with separate chaining, “too full”
means more than one element per list (on average)

n  For probing hash tables, “too full” is determined as
an arbitrary value of the load factor.

n  To rehash, make a copy of the hash table, double
the table size, and insert all elements (from the
copy) of the old table into the new table

n  Rehashing is expensive, but occurs very
infrequently.

