CMSC 206

Dictionaries and Hashing

The Dictionary ADT

- a dictionary (table) is an abstract model of a database or lookup table
- like a priority queue, a dictionary stores keyelement pairs
- the main operation supported by a dictionary is searching by key

Examples

- Telephone directory
- Library catalogue
- Books in print: key ISBN
- FAT (File Allocation Table)

The Dictionary ADT

- simple container methods:
- size()
- isEmpty()
- iterator()
- query methods:
- get(key)
- getAllElements(key)

The Dictionary ADT

- update methods:
- insert(key, element)
- remove(key)
- removeAllElements(key)
- special element
- NO_SUCH_KEY, returned by an unsuccessful search

The Basic Problem

- We have lots of data to store.
- We desire efficient - O(1) - performance for insertion, deletion and searching.
- Too much (wasted) memory is required if we use an array indexed by the data' s key.
- The solution is a "hash table".

Hash Table

- Basic Idea
- The hash table is an array of size ' m '
- The storage index for an item determined by a hash function $\mathrm{h}(\mathrm{k}): \mathrm{U} \rightarrow\{0,1, \ldots, \mathrm{~m}-1\}$
- Desired Properties of h(k)
- easy to compute
- uniform distribution of keys over $\{0,1, \ldots, m-1\}$
- when $h\left(k_{1}\right)=h\left(k_{2}\right)$ for $k_{1}, \mathrm{k}_{2} \in \mathrm{U}$, we have a collision

Division Method

- The hash function:
$h(k)=k \bmod m$ where m is the table size.
- m must be chosen to spread keys evenly.
- Poor choice: $m=$ a power of 10
- Poor choice: $m=2^{b}, b>1$
- A good choice of m is a prime number.
- Table should be no more than 80% full.
- Choose m as smallest prime number greater than $\mathrm{m}_{\text {min }}$, where $m_{\text {min }}=($ expected number of entries $) / 0.8$

Multiplication Method

- The hash function:

$$
h(k)=\lfloor m(k A-\lfloor k A\rfloor)\rfloor
$$

where A is some real positive constant.

- A very good choice of A is the inverse of the "golden ratio."
- Given two positive numbers x and y, the ratio x / y is the "golden ratio" if $\phi=\mathrm{x} / \mathrm{y}=(\mathrm{x}+\mathrm{y}) / \mathrm{x}$
- The golden ratio:

$$
\begin{gathered}
x^{2}-x y-y^{2}=0 \quad \Rightarrow \quad \\
\phi=\begin{array}{l}
\left(1+\text { sqrtrt }_{2}-\phi-1=0\right) / 2 \\
\sim=\text { Fib }_{i} / \text { Fib }_{i-1}
\end{array} \quad=\quad 1.618033989 \ldots
\end{gathered}
$$

Multiplication Method (cont.)

- Because of the relationship of the golden ratio to Fibonacci numbers, this particular value of A in the multiplication method is called "Fibonacci hashing."
- Some values of

$$
\begin{aligned}
\mathrm{h}(\mathrm{k})= & \left\lfloor\mathrm{m}\left(\mathrm{k} \phi^{-1}-\left\lfloor\mathrm{k} \phi^{-1}\right\rfloor\right)\right\rfloor \\
& =0 \quad \text { for } \mathrm{k}=0 \\
& =0.618 \mathrm{~m} \text { for } \mathrm{k}=1\left(\phi^{-1}=1 / 1.618 \ldots=0.618 \ldots\right) \\
& =0.236 \mathrm{~m} \text { for } \mathrm{k}=2 \\
& =0.854 \mathrm{~m} \text { for } \mathrm{k}=3 \\
& =0.472 \mathrm{~m} \text { for } \mathrm{k}=4 \\
& =0.090 \mathrm{~m} \text { for } \mathrm{k}=5 \\
& =0.708 \mathrm{~m} \text { for } \mathrm{k}=6 \\
& =0.326 \mathrm{~m} \text { for } \mathrm{k}=7 \\
& =\ldots \\
& =0.777 \mathrm{~m} \text { for } \mathrm{k}=32
\end{aligned}
$$

Fibonacci Hashing

Non-integer Keys

- In order to have a non-integer key, must first convert to a positive integer:

$$
\begin{aligned}
h(k)=g(f(k)) \text { with } f: U & \rightarrow \text { integer } \\
g: I & \rightarrow\{0 \ldots m-1\}
\end{aligned}
$$

- Suppose the keys are strings.
- How can we convert a string (or characters) into an integer value?

Horner's Rule

```
static int hash(String key, int tableSize)
f
    int hashVal = 0;
    for (int \(i=0 ; i<k e y . l e n g t h() ; i++)\)
    hashVal = 37 * hashVal + key.charAt(i);
```

 hashVal \%= tableSize;
 if (hashVal < 0)
 hashVal += tableSize;
 return hashVal;
 \}

Example:

$$
\text { value }=(s[i]+31 * \text { value }) \% 101 ;
$$

- A. Aho, J. Hopcroft, J. Ullman, "Data Structures and Algorithms", 1983, Addison-Wesley.

$$
\begin{aligned}
& \text { "A" } A \text { " } 65 \text { " }=104 \quad \text { "O" }=111 \\
& \text { value }=(65+31 * 0) \% 101=65 \\
& \text { value }=(104+31 * 65) \% 101=99 \\
& \text { value }=(111+31 * 99) \% 101=49
\end{aligned}
$$

Example:

```
value = (s[i] + 31*value) % 101;
```

Key	Hash Value	
Aho	49	resulting table is "sparse"
Kruse	95	
Standish	60	
Horowitz	28	
Langsam	21	
Sedgewick	24	
Knuth	44	

Example:

```
value = (s[i] + 1024*value) % 128;
```

	Hash	
Key	Value	
Aho	111	Ikely to
Kruse	101	result in
Standish	104	"clusterina"
Horowitz	122	clustaring
Langsam	109	
Sedgewick	107	
Knuth	104	

Example:

$$
\text { value }=(s[i]+3 * \text { value }) \% 7 ;
$$

HashTable Class

```
public class SeparateChainingHashTable<AnyType>
public SeparateChainingHashTable( ) {/* Later */}
public SeparateChainingHashTable(int size){/*Later*/}
public void insert( AnyType x ) { /*Later*/ }
public void remove( AnyType x ) { /*Later*/}
public boolean contains( AnyType x ){/*Later */}
public void makeEmpty( ) { /* Later */ }
private static final int DEFAULT_TABLE_SIZE = 101;
private List<AnyType> [ ] theLists;
private int currentSize;
private void rehash( ) { /* Later */ }
private int myhash( AnyType x ) { /* Later */ }
private static int nextPrime( int n ) { /* Later */ }
private static boolean isPrime( int n ){ /* Later */ }
```


HashTable Ops

- boolean contains (AnyType x)
- Returns true if x is present in the table.
- void insert (AnyType x)
- If x already in table, do nothing.
- Otherwise, insert it, using the appropriate hash function.
- void remove (AnyType x)
- Remove the instance of x, if x is present.
- Ptherwise, does nothing
- void makeEmpty()

Hash Methods

$$
\begin{aligned}
& \text { private int myhash(AnyType x) } \\
& \text { \{ } \\
& \qquad \begin{array}{l}
\text { int hashVal = x.hashCode(); } \\
\text { hashVal \% theLists.length; } \\
\text { if(hashVal }<0 \text {) } \\
\text { hashVal }+=\text { theLists.length; }
\end{array}
\end{aligned}
$$

return hashVal;

Handling Collisions

- Collisions are inevitable. How to handle them?
- Separate chaining hash tables
- Store colliding items in a list.
- If m is large enough, list lengths are small.
- Insertion of key k
- hash(k) to find the proper list.
- If k is in that list, do nothing, else insert k on that list.
- Asymptotic performance
- If always inserted at head of list, and no duplicates, insert $=O(1)$ for best, worst and average cases

Hash Class for Separate Chaining

- To implement separate chaining, the private data of the hash table is an array of Lists. The hash functions are written using List functions
private List<AnyType> [] theLists;

Chaining

Performance of contains()

- contains
- Hash k to find the proper list.
- Call contains() on that list which returns a boolean.
- Performance
- best:
- worst:
- average

Performance of remove()

- Remove k from table
- Hash k to find proper list.
- Remove k from list.
- Performance
- best
- worst
- average

Handling Collisions Revisited

- Probing hash tables
- All elements stored in the table itself (so table should be large. Rule of thumb: $\mathrm{m}>=2 \mathrm{~N}$)
- Upon collision, item is hashed to a new (open) slot.
- Hash function
$h: U \times\{0,1,2, \ldots.\} \rightarrow\{0,1, \ldots, m-1\}$
$h(k, i)=(h \prime(k)+f(i)) \bmod m$
for some $h^{\prime}: ~ U \rightarrow\{0,1, \ldots, m-1\}$
and some $f(i)$ such that $f(0)=0$
- Each attempt to find an open slot (i.e. calculating $h(k, i)$) is called a probe

HashEntry Class for Probing Hash Tables

- In this case, the hash table is just an array

```
private static class HashEntry<AnyType>{
    public AnyType element; // the element
    public boolean isActive; // false if deleted
    public HashEntry( AnyType e )
    { this( e, true ); }
    public HashEntry( AnyType e, boolean active )
    { element = e; isActive = active; }
}
// The array of elements
private HashEntry<AnyType> [ ] array;
// The number of occupied cells
private int currentSize;
```


Linear Probing

- Use a linear function for $f(i)$

$$
f(i)=c * i
$$

- Example:
$h^{\prime}(k)=k \bmod 10$ in a table of size $10, f(i)=i$
So that
$h(k, i)=(k \bmod 10+i) \bmod 10$

Insert the values $\mathrm{U}=\{89,18,49,58,69\}$ into the hash table

Linear Probing (cont.)

- Problem: Clustering
- When the table starts to fill up, performance $\rightarrow \mathrm{O}$ (N)
- Asymptotic Performance
- Insertion and unsuccessful find, average
- λ is the "load factor" - what fraction of the table is used
- Number of probes $\cong(1 / 2)\left(1+1 /(1-\lambda)^{2}\right)$
- if $\lambda \cong 1$, the denominator goes to zero and the number of probes goes to infinity

Linear Probing (cont.)

- Remove
- Can't just use the hash function(s) to find the object and remove it, because objects that were inserted after X were hashed based on X's presence.
- Can just mark the cell as deleted so it won' t be found anymore.
- Other elements still in right cells
- Table can fill with lots of deleted junk

Linear Probing Example

- $\mathrm{h}(\mathrm{k})=k \bmod 13$
- Insert keys:
- 1841224459323173

		41			18	44	59	32	22	31	72	
0	1	2	3	4	5	6	7	8	9	10	11	12

Quadratic Probing

- Use a quadratic function for $f(i)$

$$
f(i)=c_{2} i^{2}+c_{1} i+c_{0}
$$

The simplest quadratic function is $f(i)=i^{2}$

- Example:

Let $\mathrm{f}(\mathrm{i})=\mathrm{i}^{2}$ and $\mathrm{m}=10$
Let $h^{\prime}(k)=k \bmod 10$
So that

$$
h(k, i)=\left(k \bmod 10+i^{2}\right) \bmod 10
$$

Insert the value $\mathrm{U}=\{89,18,49,58,69\}$ into an initially empty hash table

Quadratic Probing (cont.)

- Advantage:
- Reduced clustering problem
- Disadvantages:
- Reduced number of sequences
- No guarantee that empty slot will be found if $\lambda \geq 0.5$, even if m is prime
- If m is not prime, may not find an empty slot even if $\lambda<0.5$

Double Hashing

- Let $f(i)$ use another hash function

$$
f(i)=i^{*} h_{2}(k)
$$

Then $h(k, l)=\left(h^{\prime}(k)+i{ }^{*} h_{2}(k)\right) \bmod m$ And probes are performed at distances of $h_{2}(k), 2{ }^{*} h_{2}(k), 3{ }^{*} h_{2}(k), 4{ }^{*} h_{2}(k)$, etc

- Choosing $h_{2}(k)$
- Don' t allow $h_{2}(k)=0$ for any k.
- A good choice:
$h_{2}(k)=R-(k \bmod R)$ with R a prime smaller than m
- Characteristics
- No clustering problem
- Requires a second hash function

Rehashing

- If the table gets too full, the running time of the basic operations starts to degrade.
- For hash tables with separate chaining, "too full" means more than one element per list (on average)
- For probing hash tables, "too full" is determined as an arbitrary value of the load factor.
- To rehash, make a copy of the hash table, double the table size, and insert all elements (from the copy) of the old table into the new table
- Rehashing is expensive, but occurs very infrequently.

