Introduction to Trees
Tree ADT

- Tree definition
 - A tree is a set of nodes which may be empty
 - If not empty, then there is a distinguished node \(r \), called *root* and zero or more non-empty subtrees \(T_1, T_2, \ldots T_k \), each of whose roots are connected by a directed edge from \(r \).

- This recursive definition leads to recursive tree algorithms and tree properties being proved by induction.

- Every node in a tree is the root of a subtree.
A Generic Tree
Tree Terminology

- *Root* of a subtree is a child of *r*. *r* is the *parent*.
- All children of a given node are called *siblings*.
- A *leaf* (or external node) has no children.
- An *internal node* is a node with one or more children.
- A *path* from node V_1 to node V_k is a sequence of nodes s.t. V_i is the parent of V_{i+1} for $1 \leq i \leq k$.
 - If there is a path from V_1 to V_2, then V_1 is an *ancestor* of V_2 and V_2 is a *descendent* of V_1.
More Tree Terminology

- The *length* of this path is the number of edges.
 - The length of the path is one less than the number of nodes on the path (\(k - 1 \) in this example)

- The *depth* (also called *level*) of any node in a tree is the length of the path from root to the node.

- The *height* of a tree is the length of the path from the root to the deepest node in the tree.
 - A tree with only one node (the root) has height 0.
A Unix directory tree

```
<table>
<thead>
<tr>
<th>/usr*</th>
</tr>
</thead>
<tbody>
<tr>
<td>mark*</td>
</tr>
<tr>
<td>alex*</td>
</tr>
<tr>
<td>bill*</td>
</tr>
</tbody>
</table>
    
```

```
<table>
<thead>
<tr>
<th>book*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch1.r</td>
</tr>
<tr>
<td>ch2.r</td>
</tr>
<tr>
<td>ch3.r</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>course*</th>
</tr>
</thead>
<tbody>
<tr>
<td>junk</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>cop3530*</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall05*</td>
</tr>
<tr>
<td>spr06*</td>
</tr>
<tr>
<td>sum06*</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>cop3212*</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall05*</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>junk</th>
</tr>
</thead>
<tbody>
<tr>
<td>work*</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>course*</th>
</tr>
</thead>
<tbody>
<tr>
<td>prog1.r</td>
</tr>
<tr>
<td>prog2.r</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>prog1.r</td>
</tr>
<tr>
<td>prog2.r</td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>grades</th>
</tr>
</thead>
</table>
```
Tree Storage

- A tree node contains:
 - Data Element
 - Links to other nodes

- Any tree can be represented with the “first-child, next-sibling” implementation.

```java
class TreeNode{
    AnyType    element;
    TreeNode  firstChild;
    TreeNode  nextSibling;
}
```
Printing a Child/Sibling Tree

// depth equals the number of tabs to indent name
private void listAll(int depth)
{
 printName(depth); // Print the name of the object
 if(isDirectory())
 for each file c in this directory
 (i.e. for each child)
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}

What is the output when listAll() is used for the Unix directory tree?
K-ary Tree

- If we know the maximum number of children each node will have, K, we can use an array of children references in each node.

```cpp
class KTreeNode
{
    AnyType element;
    KTreeNode children[ K ];
}
```
Pseudocode for Printing a K-ary Tree

// depth equals the number of tabs to indent name
private void listAll(int depth)
{
 printElement(depth); // Print the object
 if(children != null)
 for each child c in children array
 c.listAll(depth + 1);
}

public void listAll()
{
 listAll(0);
}
Binary Trees

- A special case of K-ary tree is a tree whose nodes have exactly two child references -- binary trees.

- A binary tree is a rooted tree in which no node can have more than two children AND the children are distinguished as *left* and *right*.
The Binary Node Class

```java
private class BinaryNode<AnyType>
{
    // Constructors
    BinaryNode( AnyType theElement )
    {
        this( theElement, null, null );
    }

    BinaryNode( AnyType theElement,
                BinaryNode<AnyType> lt, BinaryNode<AnyType> rt )
    {
        element  = theElement; left = lt; right = rt;
    }

    AnyType element;            // The data in the node
    BinaryNode<AnyType> left;   // Left child reference
    BinaryNode<AnyType> right;  // Right child reference
}
```
Full Binary Tree

A full binary tree is a binary tree in which every node is a leaf or has exactly two children.
Theorem: A FBT with n internal nodes has $n + 1$ leaves (external nodes).

Proof by strong induction on the number of internal nodes, n:

Base case:
- Binary Tree of one node (the root) has:
 - zero internal nodes
 - one external node (the root)

Inductive Assumption:
- Assume all FBTs with n internal nodes have $n + 1$ external nodes.
FBT Proof (cont’d)

- Inductive Step - prove true for a tree with \(n + 1 \) internal nodes (i.e. a tree with \(n + 1 \) internal nodes has \((n + 1) + 1 = n + 2 \) leaves)
 - Let \(T \) be a FBT of \(n \) internal nodes.
 - Therefore \(T \) has \(n + 1 \) leaf nodes. (Inductive Assumption)
 - Enlarge \(T \) so it has \(n+1 \) internal nodes by adding two nodes to some leaf. These new nodes are therefore leaf nodes.
 - Number of leaf nodes increases by 2, but the former leaf becomes internal.
 - So,
 - \# internal nodes becomes \(n + 1 \),
 - \# leaves becomes \((n + 1) + 2 - 1 = n + 2 \)
A Perfect Binary Tree is a Full Binary Tree in which all leaves have the same depth.
Theorem: The number of nodes in a PBT is $2^{h+1} - 1$, where h is height.

Proof by strong induction on h, the height of the PBT:

- Notice that the number of nodes at each level is 2^l. (Proof of this is a simple induction - left to student as exercise). Recall that the height of the root is 0.
- Base Case: The tree has one node; then $h = 0$ and $n = 1$ and $2^{(h + 1)} - 1 = 2^{(0 + 1)} - 1 = 2^1 - 1 = 2 - 1 = 1 = n$.
- Inductive Assumption: Assume true for all PBTs with height $h \leq H$.

17
Proof of PBT Theorem (cont)

- Prove true for PBT with height $H+1$:
 - Consider a PBT with height $H + 1$. It consists of a root and two subtrees of height $\leq H$. Since the theorem is true for the subtrees (by the inductive assumption since they have height $\leq H$) the PBT with height $H+1$ has
 - $(2^{(H+1)} - 1)$ nodes for the left subtree
 - $+ (2^{(H+1)} - 1)$ nodes for the right subtree
 - $+ 1$ node for the root
 - Thus, $n = 2 \times (2^{(H+1)} - 1) + 1$
 $= 2^{(H+1)+1} - 2 + 1 = 2^{((H+1)+1)} - 1$
A Complete Binary Tree is a binary tree in which every level is completed filled, except possibly the bottom level which is filled from left to right.
Tree Traversals

Depth-First Traversals
- Preorder – root, left subtree, right subtree
- Inorder – left subtree, root, right subtree
- Postorder – left subtree, right subtree, root

Breadth-First Traversal
- Level-order – each level is printed in turn
Tree Traversals

Depth-first
Inorder: A, B, C, D, E, F, G, H, I (left, root, right) \(\leftrightarrow\) Notice the sorting!
Postorder: A, C, E, D, B, H, I, G, F (left, right, root)

Breadth-first
Level-order: F, B, G, A, D, I, C, E, H
Constructing Trees

- Is it possible to reconstruct a Binary Tree from just one of its pre-order, inorder, or post-order sequences?
Constructing Trees (cont)

- Given two sequences (say pre-order and inorder) is the tree unique?
Finding an element in a Binary Tree?

- Return a reference to node containing x, return null if x is not found

```java
public BinaryNode<AnyType> find(AnyType x)
{
    return find(root, x);
}

private BinaryNode<AnyType> find( BinaryNode<AnyType> node, AnyType x)
{
    BinaryNode<AnyType> t = null; // in case we don’t find it
    if ( node.element.equals(x) )  // found it here??
        return node;

    // not here, look in the left subtree
    if( node.left != null)
        t = find(node.left,x);

    // if not in the left subtree, look in the right subtree
    if ( t == null && node.right != null)
        t = find(node.right,x);

    // return reference, null if not found
    return t;
}
```
Binary Trees and Recursion

- A Binary Tree can have many properties
 - Number of leaves
 - Number of interior nodes
 - Is it a full binary tree?
 - Is it a perfect binary tree?
 - Height of the tree

- Each of these properties can be determined using a recursive function.
Recursive Binary Tree Function

return-type function (BinaryNode<AnyType> t) {
 // base case - usually empty tree
 if (t == null) return xxxx;

 // determine if the node referred to by t has the property
 // traverse down the tree by recursively "asking" left/right
 // children if their subtree has the property

 return theResult;
}
Is this a full binary tree?

```java
boolean isFBT (BinaryNode<AnyType> t)
{
    // base case - an empty tee is a FBT
    if (t == null) return true;

    // determine if this node is “full”
    // if just one child, return – the tree is not full
    if (((t.left == null && t.right != null)
         || (t.right == null && t.left != null))
        return false;

    // if this node is full, “ask” its subtrees if they are full
    // if both are FBTs, then the entire tree is an FBT
    // if either of the subtrees is not FBT, then the tree is not
    return isFBT( t.right ) && isFBT( t.left );
}
```
Other Recursive Binary Tree Functions

- **Count number of interior nodes**
  ```
  int countInteriorNodes( BinaryNode<AnyType> t);
  ```

- **Determine the height of a binary tree. By convention (and for ease of coding) the height of an empty tree is -1**
  ```
  int height( BinaryNode<AnyType> t);
  ```

- **Many others**
Other Binary Tree Operations

- How do we insert a new element into a binary tree?
- How do we remove an element from a binary tree?