
Splay Trees

Splay Trees

2

Problems with BSTs
n  Because the shape of a BST is determined

by the order that data is inserted, we run
the risk of trees that are essentially lists

21
12

20

15

32

24 37

40

55

56

77

3

BST Sequence of Operations

n  Worst case for a single BST operation is O(N)
n  Not so bad if this happens only occasionally
n  BUT...its not uncommon for an entire

sequence of “bad” operations to occur. In this
case, a sequence of M operations take
O(M * N) time and the time for the sequence of
operations becomes noticeable.

4

Splay Tree Sequence of Operations

n  Splay trees guarantee that a sequence of M
operations takes at most O(M * lg N) time.

n  We say that the splay tree has amortized
running time of O(lg N) cost per operation.
Over a long sequence of operations, some
may take more than lg N time, some will
take less.

5

Splay Tree Sequence of Operations (cont.)
n  Does not preclude the possibility that any particular

operation is still O(N) in the worst case.
q  Therefore, amortized O(lg N) not as good as worst

case O(lg N)
q  But, the effect is the same – there is no “bad”

sequence of operations or bad input sequences.
n  If any particular operation is O(N) and we still want

amortized O(lg N) performance, then whenever a node
is accessed, it must be moved. Otherwise its access
time is always O(N).

6

Splay Trees

n  The basic idea of the splay tree is that
every time a node is accessed, it is pushed
to the root by a series of tree rotations.
This series of tree rotations is knowing as
“splaying”.

n  If the node being “splayed” is deep, many
nodes on the path to that node are also
deep and by restructuring the tree, we
make access to all of those nodes cheaper
in the future.

7

Basic “Single” Rotation in a BST

Assuming that the tree on the left is a BST, how can
we verify that the tree on the right is still a valid
BST?

Note that the rotation can be performed in either
direction.

Rotating k1 around k2

Under the Hood
how rotation really works

In the previous slide, rotating k1 around k2 is really nothing
more than performing these 2 relinking statements:
k2.left = k1.right; and
k1.right = k2;

Now, k2 is the parent of k1, and the diagram on the right

just shows the nodes in their proper perspective.
You should work out the code to do all of the double

rotations in the splay tree section (zig-zig, zig-zag) of
the text and the slides that follow

8

9

Splay Operation
n  To “splay node x”, traverse up the tree from

node x to root, rotating along the way until x
is the root. For each rotation:
q  If x is the root, do nothing.
q  If x has no grandparent, rotate x about its parent.
q  If x has a grandparent,

n  if x and its parent are both left children or both right
children, rotate the parent about the grandparent, then
rotate x about its parent.

n  if x and its parent are opposite type children (one left
and the other right), rotate x about its parent, then rotate
x about its new parent (former grandparent).

10

Node has no grandparent - Zig

11

Node and Parent are Same Side
(both left/right children) -- Zig-Zig

Rotate P around G, then X around P

12

Node and Parent are Different Sides
(one is left, one is right child) -- Zig-Zag

Rotate X around P, then X around G

13

Operations in Splay Trees
n  insert

q  first insert as in binary search tree
q  then splay inserted node
q  if there is a duplicate, the node holding the

duplicate element is splayed
n  find/contains

q  search for node
q  if found, splay it; otherwise splay last node

accessed on the search path

14

Operations on Splay Trees (cont)
n  remove

q  splay element to be removed
n  if the element to be deleted is not in the tree, the node

last visited on the search path is splayed
q  disconnect left and right subtrees from root
q  do one or both of:

n  splay max item in TL (then TL has no right child)
n  splay min item in TR (then TR has no left child)

q  connect other subtree to empty child of root

15

Exercise - find(65)

50

60

70

65

63 66

40

43 20

16

16

Exercise - remove(25)

50

60

70

65

63 66

40

43 20

16 25

17

Insertion in order into a Splay Tree

In a BST, building a tree from N sorted elements was
O(N2). What is the performance of building a splay tree
from N sorted elements?

18

Tit le:
splay .zig_zag.eps
Creator:
fig2dev Vers ion 3.2 Patchlevel 0-beta2
Prev iew:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

An extreme example of splaying

19

Splay Tree Code

n  The splaying operation is performed “up the tree” from
the node to the root.

n  How do we traverse “up” the tree?
n  How do we know if X and P are both left/right children or

are different sided children?
n  How do we know if X has a grandparent?
n  What disadvantages are there to this technique?

20

Top-Down Splay Trees

n  Rather than write code that traverses both up and down
the tree, “top-down” splay trees only traverse down the
tree. On the way down, rotations are performed and the
tree is split into three parts depending on the access
path (zig, zig-zig, zig-zag) taken
q  X, the node currently being accessed
q  Left – all nodes less than X
q  Right – all nodes greater than X

n  As we traverse down the tree, X, Left, and Right are
reassembled

n  This method is faster in practice, uses only O(1) extra
space and still retains O(lg N) amortized running time.

