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CS 206 
Data Structures 
 

Asymptotic Analysis 
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Complexity 

n  How many resources will it take to solve a 
problem of a given size? 
q  time 
q  space 

n  Expressed as a function of problem size (beyond 
some minimum size) 
q  how do requirements grow as size grows? 

n  Problem size 
q  number of elements to be handled 
q  size of thing to be operated on 
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The Goal of Asymptotic Analysis 

n  How to analyze the running time (aka computational 
complexity) of an algorithm in a theoretical model. 

n  Using a theoretical model allows us to ignore the 
effects of  
q  Which computer are we using? 
q  How good is our compiler at optimization 

n  We define the running time of an algorithm with input 
size n as T ( n ) and examine the rate of growth of T
( n ) as n grows larger and larger and larger. 
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Growth Functions 

n  Constant 
 T(n) = c 
 ex: getting array element at known location  
  any simple C++ statement (e.g. assignment)    

n  Linear 
 T(n) = cn  [+ possible lower order terms] 
 ex:  finding particular element in array of size n 
 (i.e. sequential search) 

  trying on all of your n shirts 
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Growth Functions (cont.) 

n  Quadratic 
 T(n) = cn2 [ + possible lower order terms] 
 ex:  sorting all the elements in an array (using bubble sort) 
  

 trying all your n shirts with all your n pants 
  

n  Polynomial 
 T(n) = cnk [ + possible lower order terms] 
 ex:  finding the largest element of a k-dimensional array 
  looking for maximum substrings in array 

   



6 

Growth Functions (cont.) 

n  Exponential 
 T(n) = cn [+ possible lower order terms]   
 ex:  constructing all possible orders of array elements 
  Towers of Hanoi (2n) 
 Recursively calculating nth Fibonacci number (2n) 

   
n  Logarithmic 

 T(n) = lg n [ + possible lower order terms] 
 ex:  finding a particular array element (binary search) 
 any algorithm that continually divides a problem in half  
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A Graph of Growth Functions 
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Expanded Scale 
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Asymptotic Analysis 

n  How does the time (or space) requirement grow as the 
problem size grows really, really large? 
q  We are interested in “order of magnitude” growth rate. 
q  We are usually not concerned with constant 

multipliers. For instance, if the running time of an 
algorithm is proportional to (let’s suppose) the square 
of the number of input items, i.e. T(n) is c*n2, we won’t 
(usually) be concerned with the specific value of c. 

q  Lower order terms don’t matter. 
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Analysis Cases 
n  What particular input (of given size) gives worst/best/average 

complexity? 
 
Best Case: If there is a permutation of the input data that minimizes the 

“run time efficiency”, then that minimum is the best case run time 
efficiency 

Worst Case: If there is a permutation of the input data that maximizes 
the “run time efficiency”, then that maximum is the best case run 
time efficiency 

Average case is the “run time efficiency” over all possible inputs.  
 
n  Mileage example: how much gas does it take to go 20 miles? 

q  Worst case:  all uphill 
q  Best case:  all downhill, just coast 
q  Average case:  “average terrain 
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Cases Example 

n  Consider sequential search on an unsorted 
array of length n, what is time complexity? 

 
n  Best case: 
 
n  Worst case: 
 
n  Average case: 
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Formal Definition of Big-Oh 

n  T(n) = O(f(n)) (read “T( n ) is in Big-Oh of f( n )” ) 
 if and only if T(n) ≤ cf(n) for some constants c, n0 and n ≥ n0  

 
This means that eventually (when n ≥ n0 ), T( n ) is always less 

than or equal to c times f( n ). 
The growth rate of T(n) is less than or equal to that of f(n) 
Loosely speaking, f( n ) is an “upper bound” for T ( n ) 
 
NOTE: if T(n) =O(f(n)), there are infinitely many pairs of c’s and 

n0
’s that satisfy the relationship. We only need to find one 

such pair for the relationship to hold. 
 
 



13 

Big-Oh Example 
n  Suppose we have an algorithm that reads N integers from 

a file and does something with each integer. 
n  The algorithm takes some constant amount of time for 

initialization (say 500 time units) and some constant 
amount of time to process each data element (say 10 time 
units).   

n  For this algorithm, we can say T( N ) = 500 + 10N. 
n  The following graph shows T( N ) plotted against N, the 

problem size and 20N. 
n  Note that the function N will never be larger than the 

function T( N ), no matter how large N gets.  But there are 
constants c0 and n0 such that T( N ) <= c0N when N >= n0,  
namely c0 = 20 and n0 = 50. 

n  Therefore, we can say that T( N ) is in  O( N ). 
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Simplifying Assumptions 

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)) 
 

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n)) 
 

3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),  
  then f1(n) + f2(n) = O(max (g1(n), g2(n))) 
 

4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),  
  then f1(n) * f2(n) = O(g1(n) * g2(n)) 
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Example 

n  Code: 
 a = b; 
 ++sum; 

 int y = Mystery( 42 ); 

 
n  Complexity: 
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Example 

n  Code: 
 sum = 0; 
 for (i = 1; i <= n; i++) 

  sum += n; 

 
n  Complexity: 
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Example 

n  Code: 
 sum1 = 0; 
 for (i = 1; i <= n; i++) 

   for (j = 1; j <= n; j++) 
    sum1++; 

n  Complexity:  
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Example 

n  Code:  
 sum2 = 0; 
 for (i = 1; i <= n; i++) 

   for (j = 1; j <= i; j++) 

    sum2++; 

n  Complexity: 
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Example 

n  Code: 
 sum = 0; 
 for (j = 1; j <= n; j++) 

   for (i = 1; i <= j; i++) 

    sum++; 
 for (k = 0; k < n; k++) 

   a[ k ] = k; 

 
n  Complexity: 
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Example 

n  Code: 
 sum1 = 0; 
 for (k = 1; k <= n; k *= 2) 

   for (j = 1; j <= n; j++) 

    sum1++; 

 
n  Complexity:  
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Example 

n  Using Horner’s rule to convert a string to an integer 
 
static int convertString(String key) 

{ 

 int intValue = 0; 

 // Horner’s rule 

 for (int i = 0; i < key.length(); i++) 
  intValue = 37 * intValue + key.charAt(i); 

return intValue 

} 
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Example 

n  Square each element of an N x N matrix 
 
 

n  Printing the first and last row of an N x N matrix 
 
 

n  Finding the smallest element in a sorted array of N 
integers 
 
 

n  Printing all permutations of N distinct elements 
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Space Complexity 

n  Does it matter? 
 
n  What determines space complexity? 
 
n  How can you reduce it? 
 
n  What tradeoffs are involved? 
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Little-Oh and Big-Theta 

n  In addition to Big-O, there are other definitions used 
when discussing the relative growth of functions 

 
Big-Theta – T(n) = Θ( f(n) ) if c1*f(n) ≤ T(n) ≤ c2*f(n) 

This means that f(n) is both an upper- and lower-bound for T(n) 
In particular, if T(n) = Θ( f(n) ) , then T(n) = O( f(n) ) 

 
Little-Oh – T(n) = o( f(n) ) if for all constants c there exist 

n0 such that T(n) < c*f(n). 
 Note that this is more stringent than the definition of Big-O and 
therefore if T( n ) = o( f(n) ) then T(n) = O( f(n) ) 
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Relative Orders of Growth 
An Exercise 

 n (linear) 
 logkn for 0 < k < 1 
 constant 
 n1+k for k > 0 (polynomial) 
 2n (exponential) 
 n log n 
 logkn for k > 1 
 nk for 0 < k < 1 
 log n 
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Relative Orders of Growth 
Answers 

    constant 
    logkn for 0 < k < 1 
    log n 
    logkn for k> 1    

   nk for k < 1 
    n (linear) 
    n log n 
    n1+k for k > 0 (polynomial) 
    2n (exponential) 
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Big-Oh is not the whole story 

n  Suppose you have a choice of two approaches to writing a program. 
Both approaches have the same asymptotic performance (for 
example, both are O(n lg(n)). Why select one over the other, they're 
both the same, right? They may not be the same. There is this small 
matter of the constant of proportionality.  

n  Suppose algorithms A and B have the same asymptotic 
performance, TA(n) = TB(n) = O(g(n)). Now suppose that A does 10 
operations for each data item, but algorithm B only does 3. It is 
reasonable to expect B to be faster than A even though both have 
the same asymptotic performance. The reason is that asymptotic 
analysis ignores constants of proportionality.  

 
n  The following slides show a specific example. 
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Algorithm A 

n  Let's say that algorithm A is  
{  

 initialization    // takes 50 units 

 read in n elements into array A;  // 3 units/element 

 for (i = 0; i < n; i++)  

 { 

      do operation1 on A[i];   // takes 10 units 

    do operation2 on A[i];   // takes 5 units 

    do operation3 on A[i];   // takes 15 units 

 } 

 } 

 TA(n) = 50 + 3n + (10 + 5 + 15)n = 50 + 33n 



Proofs of Rules 
These are included only for 

completeness and are 
optional reading. 
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Constants in Bounds 
(“constants don’t matter”) 
n  Theorem:  

 If T(x) = O(cf(x)), then T(x) = O(f(x)) 
n  Proof:  

q  T(x) = O(cf(x)) implies that there are constants c0 
and n0 such that T(x) ≤ c0(cf(x)) when x ≥ n0 

q  Therefore, T(x) ≤ c1(f(x)) when x ≥ n0 where c1 = 
c0c 

q  Therefore, T(x) = O(f(x)) 
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Sum in Bounds (the “sum rule”) 
n  Theorem:  

 Let T1(n) = O(f(n)) and T2(n) = O(g(n)).  
 Then T1(n) + T2(n) = O(max (f(n), g(n))). 

n  Proof:   
q  From the definition of O,  

T1(n) ≤ c1f (n) for n ≥ n1  and T2(n) ≤ c2g(n) for n ≥ n2  

q  Let n0 = max(n1, n2). 
q  Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f (n) + c2g(n) 
q  Let c3 = max(c1, c2).  
q  Then, T1(n) + T2(n) ≤ c3 f (n) + c3 g (n)             ≤ 

2c3 max(f (n), g (n))             ≤ c max(f (n), g 
(n))   

          = O (max (f(n), g(n))) 
 



34 

Products in Bounds (“the product rule”) 

n  Theorem:  
 Let T1(n) = O(f(n)) and T2(n) = O(g(n)).  
 Then T1(n) * T2(n) = O(f(n) * g(n)). 

n  Proof:   
q  Since T1(n) = O(f(n)), then T1 (n) ≤ c1f(n) when n ≥ n1 

q  Since T2(n) = O(g(n)), then T2 (n) ≤ c2g(n) when n ≥ n2 

q  Hence T1(n) * T2(n) ≤ c1 * c2 * f(n) * g(n) when n ≥ n0  
 where n0 = max (n1, n2) 

q  And T1(n) * T2(n) ≤ c * f (n) * g(n) when n ≥ n0  
 where n0 = max (n1, n2) and c = c1*c2 

q  Therefore, by definition, T1(n)*T2(n) = O(f(n)*g(n)).   
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Polynomials in Bounds 

n  Theorem:  
 If  T (n) is a polynomial of degree k, then T(n) = O(nk).  

n  Proof:  
q  T (n) = nk + nk-1 + … + c is a polynomial of degree k. 
q  By the sum rule, the largest term dominates.  
q  Therefore,  T(n) = O(nk).  
 


