
Object Oriented Programming 

Constructors, Statics, Wrappers & 
Packages 



Object Creation 
•  Objects are created by using the operator 

new in statements such as 
  Date myDate = new Date( ); 

 

•  The expression  
   new Date( )  
 invokes a special kind of method known as 
a constructor. 

•  Constructors are used to 
– create objects and 
–  initialize the instance variables. 

2 



Constructors 

•  A constructor 
–  has the same name as the class it constructs 
–  has no return type (not even void) 

•  If the class implementer does not define any 
constructors, the Java compiler automatically 
creates a constructor that has no parameters. 

•  Constructors may be (and often are) overloaded.   

•  It’s good programming practice to always 
implement a constructor with no parameters. 

3 



The (Almost) Finished Date Class 
public class Date 
{ 
 private String month; 
 private int day;   // 1 - 31 
 private int year;   //4 digits  
  
 // no-argument constructor 
 // implementer chooses the default month, day, year 
 public Date( ) 
{ 

 month = “January”; 
  day = 1; 
  year = 2007; 
  // or better yet, call setDate(1, 1, 2007); 
 } 
 // alternative constructor 
 public Date( int month, int day, int year ) 
{ 

 this.month = monthString(month) 
  this.day = day; 
  this.year = year; 
 } 
        (continued) 4 



Date Class (cont’d) 
 // another alternative constructor 
 // January 1 of the specified year 
 public Date( int newYear ) 
{ 

 this.month = monthString( 1 ) 
  this.day = 1; 
  this.year = newYear; 
 } 

 
 // a constructor which makes a copy of an existing Date object 
 // discussed in more detail later 
 public Date( Date otherDate ) 
{ 

     month = otherDate.month; 
     day = otherDate.day; 
     year = otherDate.year; 

} 
  
 // remaining Date methods such as setDate, accessors, mutators 
 // equals, toString, and stringMonth 

 
} // end of Date class  

5 



Using Date Constructors 
public class DateDemo 
{ 
 public static void main( String[ ] args) 
{ 

 Date birthday = new Date( 1, 23, 1982 ); 
  String s1 = birthday.toString( );  // January 23, 1982 
  System.out.println( s1 ); 

 
  Date newYears = new Date( 2009 ); 
  String s2 = newYears.toString( );  // January 1, 2009 
  System.out.println( s2 ); 

 
  Date holiday = new Date( birthday ); 
  String s3 = holiday.toString( );  // January 23, 1982 
  System.out.println( s3 ); 

 
  Date defaultDate = new Date( ); 
  String s4 = defaultDate.toString( );  // January 1, 1000 
  System.out.println( s4 ); 
 } 

} 
 

6 



this( ) Constructor 

•  When several alternative constructors are 
written for a class, we reuse code by calling 
one constructor from another. 

•  The called constructor is named this( ). 
•  The call to this(…) must be the very first 

statement in the constructor 
•  You can execute other statements after the 

call to this() 
7 



Better Date Constructors 
  
 // no-argument constructor 
 // implementer chooses the default month, day, year 
 public Date( ) 
{ 

 this( 1, 1, 2007 ); 
 } 

 
 // alternative constructor 
 // January 1 of the specified year 
 public Date( int newYear ) 
{ 

 this ( 1, 1, newYear ); 
} 

 
 // most general alternative constructor called by other 

   // constructors 
 public Date( int month, int day, int year ) 
{ 

 this.month = monthString(month) 
  this.day = day; 
  this.year = year; 
 } 

8 



What Happens in Memory: 
The Stack and Heap 

•  When your program is running, local variables are 
stored in an area of memory called the stack. 

 

•  A table can be used to illustrate variables stored 
on the stack: 

 
   Var     Value 
     x       42 

      y       3.7 
 

•  The rest of memory is known as the heap and is 
used for dynamically allocated “stuff.” 

9 



Main Memory 

The stack grows and shrinks as needed (why?) 
The heap also grows and shrinks. (why?) 
Some of memory is unused (“free”). 
 

Stack 

 

 

Unused 

Memory 

 

Heap 

 

 

10 



Object Creation 

Consider this code that creates two 
Dates: 
 Date d1, d2; 
 d1 = new Date(1, 1, 2000); 
 d2 = new Date(7, 4, 1776); 

Where are these variables and objects 
located in memory? 

Why do we care? 

11 



Objects in Memory 
The statement  

 Date d1, d2;  
creates two local variables on the stack. 
 
The statements 

 d1 = new Date(1, 1, 2000); 
  d2 = new Date(7, 4, 1776); 

 
create objects on the heap.  d1 and d2 contain the memory addresses of these 

objects giving us the picture of memory shown below.  
 

d1 and d2 are called reference variables.  Reference variables which do not 
contain the memory address of any object contain the special value null. 

 

d1 

d2 

Stack Heap 

January 

1 

2000 

July 

4 

1776 
12 



Why We Care (1 of 4) 

Given the previous code 
 Date d1, d2; 

 d1 = new Date(1, 1, 2000); 
 d2 = new Date(7, 4, 1776); 

 
and corresponding picture of memory  

consider the expression d1 == d2 
 
Recall that d1 and d2 contain the addresses of their respective Date objects. 

Since the Date objects have different addresses on the heap, d1 == d2 is 
false. The == operator determines if two reference variables refer to the 
same object. 
 

So how do we compare Dates for equality? 
Dates (and other objects) should implement a method named equals. To 

check if two Dates are the same, use the expression  
   d1.equals( d2 ); 

. 
 

d1 

d2 

Stack Heap 

January 

1 

2000 

July 

4 

1776 

13 



Why We Care (2 of 4) 

On the other hand, consider this code and 
corresponding picture of memory 

  
 Date d1 = new Date(1, 1, 2000); 
 Date d2 = d1; 

 

Now d1 and d2 refer to the same Date object.  This is known as aliasing, is 
often unintentional, and can be dangerous. Why? 
 
If your intent is for d2 to be a copy of d1, then the correct code is 
 

Date d2 = new Date( d1 ); 

d1 

d2 

Stack Heap 

January 

1 

2000 

14 



Why We Care (3 of 4) 
Consider this code and the changing picture of memory 
 
Date d1 = new Date(1, 1, 2000);  // line 1 
d1 = new Date(12, 25, 2007);   // line 2 
 
 

d1 

Stack Heap 

January 

1 

2000 
d1 

Stack Heap 

January 

1 

2000 

December 

25 

2007 

After line 1 After line 2 

15 



Why We Care (4 of 4) 

•  Garbage collection 
As the diagram shows, after line 2 

is executed no variable refers 
to the Date object which 
contains “January”, 1, 2000 

In C/C++, we’d consider this a “memory leak”.  In C/C++ it’s the 
programmer’s responsibility to return dynamically allocated memory 
back to the free heap. Not so in Java! 
 
Java has a built-in “garbage collector”.  From time to time Java 
detects  objects that have been “orphaned” because no reference 
variable refers to them. The garbage collector automatically returns the 
memory for those objects to the free heap. 

d1 

Stack Heap 

January 

1 

2000 

December 

25 

2007 

16 



Variables Review: 
Primitives vs. References 

•  Every variable is implemented as a location in 
computer memory. 

 

•  When the variable is a primitive type, the value 
of the variable is stored in the memory location 
assigned to the variable. 

 

–  Each primitive type always requires the same amount 
of memory to store its values. 

        (continued) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

17 



Variables Review: 
Primitives vs. References 

•  When the variable is a class type, only the memory 
address (or reference) where its object is located is 
stored in the memory location assigned to the variable 
(on the stack). 

 

–  The object named by the variable is stored in the heap. 

–  Like primitives, the value of a class variable is a fixed size. 

–  The object, whose address is stored in the variable, can be 
of any size. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

18 



Arrays with a Class Base Type 

•  The base type of an array can be a class type as 
well as a primitive type. 

 

•  The statement 
 

 Date[] holidayList = new Date[20]; 
 
creates 20 indexed reference variables of type Date 
 
–  It does not create 20 objects of the class Date. 
 

–  Each of these indexed variables are automatically 
initialized to null. 

 

–  Any attempt to reference any of them at this point would 
result in a null pointer exception error message. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

19 



Class Parameters 

•  All parameters in Java are call-by-value 
parameters. 
–  A parameter is a local variable that is set equal 

to the value of its argument. 
 

–  Therefore, any change to the value of the 
parameter cannot change the value of its argument. 

 

•  Class type parameters appear to behave 
differently from primitive type parameters. 
–  They appear to behave in a way similar to 

parameters in languages that have the call-by-
reference parameter passing mechanism. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

20 



Class Parameters 

•  The value plugged into a class type parameter 
is a reference (memory address). 

–  Therefore, the parameter becomes another name 
for the argument. 

 
–  Any change made to the object referenced by the 

parameter will be made to the object referenced by 
the corresponding argument. 

 
–  Any change made to the class type parameter itself 

(i.e., its address) will not change its corresponding 
argument (the reference or memory address). 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

21 



changeDay Example 
public class DateParameterTest 
{ 
 public static void changeDay (int day) 

 { day = 1; } 
 
 public static void changeDate1( Date aDate ) 
  { aDate = new Date( 1, 1, 2001); } 

 
public static void changeDate2( Date aDate ) 

 { aDate.setDate( 1, 1, 2001 ); } 
 
 public static void main( String[ ] args ) 
{ 

  Date birthday = new Date( 1, 23, 1982 ); 
  

  changeDay( birthday.getDay( ) ); 
 System.out.println(birthday.toString( ));  // output? 

 
  changeDate1( birthday ); 
  System.out.println(birthday.toString( ));  // output? 

 
  changeDate2( birthday ); 
  System.out.println(birthday.toString( ));  // output? 
 } 

} 
22 



 Use of = and == with Variables of a Class Type 

•  The assignment operator (=) will produce two 
reference variables that name the same object. 

•  The test for equality (==) also behaves differently for 
class type variables. 

–  The == operator only checks that two class type 
variables have the same memory address. 

–  Unlike the equals method, it does not check that their 
instance variables have the same values. 

–  Two objects in two different locations whose instance 
variables have exactly the same values would still test 
as being "not equal." 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

23 



The Constant null 
•  null is a special constant that may be assigned to a 

reference variable of any class type. 
 

YourClass yourObject = null; 
 

•  Used to indicate that the variable has no "real value." 
–  Used in constructors to initialize class type instance 

variables when there is no obvious object to use. 

•  null is not an object. It is, a kind of "placeholder" for a 
reference that does not name any memory location. 

 

–  Because it is like a memory address, use == or != (instead 
of equals) to test if a reference variable contains null. 

 

if (yourObject == null)  . . . 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

24 



Anonymous Objects 

•  Recall, the new operator 
–  invokes a constructor which initializes an object, and  
–  returns a reference to the location in memory of the object 

created. 
•  This reference can be assigned to a variable of the 

object's class type. 
 

•  Sometimes the object created is used as an argument to 
a method, and never used again. 
–  In this case, the object need not be assigned to a variable, 

i.e., given a name. 
 

•  An object whose reference is not assigned to a variable is 
called an anonymous object. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

25 



Anonymous Object Example 
•  An object whose reference is not assigned to a variable 

is called an anonymous object. 
 
•  An anonymous Date object is used here as a parameter: 
  
 Date birthday = new Date( 1, 23, 1982 ); 
if (birthday.equals( new Date ( 1, 7, 2000 ) ) 

 System.out.println( “Equal!” ); 
 

•  The above is equivalent to: 
  
 Date birthday = new Date( 1, 23, 1982 ); 
 Date temp = new Date( 1, 7, 2000 ); 
if (birthday.equals( temp ) 

 System.out.println( “Equal!” ); 

26 



Encapsulation 



Encapsulation for Control 

•  We said we will use the term encapsulation in two 
different ways in this class (and in the text) 
•  Definition #1: "Inclusion" (“bundling"):  

•  bundling of structure and function 
•  Covered in lecture on “Object Design” 

•  Definition #2: “Exclusion” (“access control”) 
•  Strict, explicit control of how our objects can be used 
•  This will be focus of this lecture 

28 



Types of Programmers 
•  Class creators 

–  those developing new classes 
– want to build classes that expose the minimum 

interface necessary for the client program and 
hide everything else 

•  Client programmers 
–  those who use the classes (a term coined by 

Scott Meyer) 
– want to create applications by using a collection 

of interacting classes 

29 



OOP Techniques 

•  Class creators achieve their goal through 
encapsulation. 

 

Encapsulation: 
 

•  Combines data and operations into a single entity (a 
class) 

•  Provides proper access control 
•  Focuses on implementation 
•  Achieved through information hiding (abstraction) 

30 



The Value of Encapsulation 

•  Client programmers do not need to know 
how the class is implemented, only how to 
use it. 

•  The information the client programmer 
needs to use the class is kept to a 
minimum. 

•  Class implementation may be changed with 
no impact on those who use the class. 

31 



Access Control 

•  Encapsulation is implemented using access 
control. 
–  Separates interface from implementation 
–  Provides a boundary for the client programmer 

•  Visible parts of the class (the interface) 
–  can be used and/or changed by the client 

programmer. 

•  Hidden parts of the class (the implementation) 
–  Can be changed by the class creator without 

impacting any of the client programmer’s code 
–  Can’t be corrupted by the client programmer 

32 



Access Control in Java 

•  Visibility modifiers provide access control 
to instance variables and methods. 

– public visibility - accessible by everyone, in 
particular the client programmer 

 

•  A class’ interface is defined by its public methods. 

– private visibility - accessible only by the 
methods within the class 

– Two others—protected and [package]—later 

33 



Date2 Class 
In this new date class, the instance variables have been labeled 

private. 
 

public class Date2 
{ 
 private String month; 
private int day; 

   private int year; 
 
 public void toString( ) 
 { 
  return month + “ “ + day + “ “ + year; 
 } 

 
  

 
 // setDate and monthString same as Date1 class 

} 

Any Date2 class method may use the class’  
private instance variables. 

34 



Access Control Example 
Date1 class - public instance variables were used 
Date2 class - private instance variables are now used 
 

public class Date2Demo 
{ 
 public static void main( String[ ] args ) 
{ 

 Date2 myDate = new Date2( ); 
 

 myDate.month = “July”;  // compiler error 
 myDate.day = 4;   // compiler error 

  myDate.year = 1950;  // compiler error 
 
  myDate.setDate( 7, 4, 1950 ); // OK – why? 
  System.out.println( myDate.toString( )); 

    } 
} 

35 



Good Programming Practice 
•  Combine methods and data in a single class 
•  Label all instance variables as private for 

information hiding 
– The class has complete control over how/when/if 

the instance variables are changed 
–  Instance variables primarily support class 

behavior 
•  Minimize the class’ public interface 
 

“Keep it secret, keep it safe.” 
36 



Accessors & Mutator 

•  Class behavior may allow access to, or 
modification of, individual private instance 
variables. 

•  Accessor method 
–  retrieves the value of a private instance variable 
–  conventional to start the method name with get 

•  Mutator method 
–  changes the value of a private instance variable 
–  conventional to start the name of the method with set 
 

•  Gives the client program indirect access to the 
instance variables. 

37 



More Accessors and Mutators 

Question: Doesn’t the use of accessors and 
mutators defeat the purpose of making the 
instance variables private? 

Answer: No 
•  The class implementer decides which instance 

variables will have accessors. 
•  Mutators can: 

–  validate the new value of the instance variable, and 
–  decide whether or not to actually make the requested 

change. 

38 



Date2 Accessor and Mutator 
public class Date2 
{ 
 private String month; 
private int day;  // 1 - 31 

 private int year;  // 4-digit year 
 
 // accessors return the value of private data 
 public int getDay ( ) 
 { return day; } 

 
 // mutators can validate the new value 
 public boolean setYear( int newYear ) 
{ 

  if ( 1000 <= newYear && newYear <= 9999 ) 
  { 
      year = newYear; 
      return true; 
  } 
  else // this is an invalid year 
     return false; 

 
 // rest of class definition follows 

} 

39 



Accessor/Mutator Caution 

•  In general you should NOT provide 
accessors and mutators for all private 
instance variables. 

 

– Recall that the principle of encapsulation is 
best served with a limited class interface. 

•  Too many accessors and mutators lead to 
writing procedural code rather than OOP 
code. More on this later. 

40 



Classes as Structures 

•  There are two possible exceptions to the 
“make everything private” rule: 
– When the class is actually just a simple data 

structure 
•  No hard consistency rules 
•  No behaviors 
•  Local use 

– When performance is critical 
•  However, this tradeoff is often not worthwhile 

41 



Private Methods 

•  Methods may be private. 

– Cannot be invoked by a client program 
– Can only be called by other methods within the 

same class definition 
– Most commonly used as “helper” methods to 

support top-down implementation of a public 
method 

42 



Private Method Example 
public class Date2 
{ 

 private String month; 
private int day;  // 1 - 31 

 private int year;  // 4-digit year 
 

 // mutators should validate the new value 
 public boolean setYear( int newYear ) 
{ 

  if ( yearIsValid( newYear ) ) 
  { 
      year = newYear; 
      return true; 
  } 
  else  // year is invalid 
     return false; 

 
 } 
 // helper method - internal use only 
 private boolean yearIsValid( int year ) 
 { 
  return 1000 <= year && year <= 9999; 
 } 

} 

43 



Static and Final 



The Problem of Words 
 "When I use a word," Humpty Dumpty said in rather a scornful tone, "it means just 
what I choose it to mean -- neither more nor less."  
"The question is," said Alice, "whether you can make words mean so many different 
things."  
"The question is," said Humpty Dumpty, "which is to be master - - that's all."  
Lewis Carroll, Through the Looking Glass 
 

 

•  So, what do static (and final) mean in Java? 
–  public static final float PI = 3.14159; 
–  public static int timesCreated; 
–  public static void main(String[] args) {…} 

•  …and why do they mean that?! 
45 



History of static 

•  In C, originally needed a way to let a 
variable keep its value unchanged across 
calls, i.e., keep it “static” 

•  Extended scope to repurpose static 
keyword for file-scope global variables 

•  Java repurposed the word multiple times 
again, in an OOP context 

•  Humpty Dumpty would have loved static 

46 



What Does “static” Mean in Java? 

•  Instance variables, constants, and methods 
may all be labeled as static. 

 

•  In this context, static means that there is 
one copy of the variable, constant, or 
method that belongs to the class as a 
whole, and not to a particular instance. 

 

•  It is not necessary to instantiate an object 
to access a static variable, constant or 
method. 

47 



Static Variables 
•  A static variable belongs to the class as a whole, not just 

to one object. 
 
•  There is only one copy of a static variable per class. 
 
•  All objects of the class can read and change this static 

variable. 
 
•  A static variable is declared with the addition of the 

modifier static. 

static int myStaticVariable = 0; 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

48 



Static Constants 
•  A static constant is used to symbolically represent a constant value. 
•  In Java, constants derive from regular variables, by “finalizing” them 

–  The declaration for a static defined constant must include the modifier 
final, which indicates that its value cannot be changed. 

 

 public static final float PI = 3.142; 
 
(The modifier final is also overloaded, and means other things in other 

contexts, as we shall see later.) 
 

•  Static constants belong to the class as a whole, not to each object, so 
there is only one copy of a static constant 

 
•  When referring to such a defined constant outside its class, use the 

name of its class in place of a calling object.  
 

float radius = MyClass.PI * radius * radius; 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

49 



Static Methods 
So far, 
•  class methods required a calling object in order 

to be invoked.  
 

  Date birthday = new Date(1, 23, 1982); 
  String s = birthday.toString( ); 

 

•  These are sometimes known as non-static 
methods. 

 
Static methods: 
•  still belong to a class, but need no calling object, 

and 
•  often provide some sort of utility function. 

50 



monthString Method 
Recall the Date class private helper method monthString. 
 

–  Translates an integer month to a string  
–  Note that the monthString method 

•  Does not call any other methods of the Date class, and 
•  Does not use any instance variables (month, day, year) from the Date class. 

 
•  This method can be made available to users of the Date class without 

requiring them to create a Date object. 
 

 public static String monthString( int monthNumber ) { 
  switch ( monthNumber )  { 
   case 1:  return "January"; 
          case 2:  return "February"; 
   case 3:  return "March";   
           case 4:  return "April"; 
           case 5:  return "May"; 
           case 6:  return "June"; 
           case 7:  return "July"; 
           case 8:  return "August"; 
           case 9:  return "September"; 
           case 10: return "October"; 
           case 11: return "November"; 
           case 12: return "December"; 
           default: return “????”; 
      } 
 } 

  

It is now a 
public static 
method. 

51 



monthString Demo 
•  Code outside of the Date class can now use the 

monthString method without creating a Date object.  
•  Prefix the method name with the name of the class 

instead of an object. 
 
class MonthStringDemo 
{ 

 public static void main( String [ ] args ) 
 { 
  String month = Date.monthString( 6 ); 
  System.out.println( month ); 
 } 

} 
 

Date is a class name, 
not an object name. 

monthString is the name 
of a static method 

52 



Rules for Static Methods 
•  Static methods have no calling/host object (they have no 
this). 

  
•  Therefore, static methods cannot: 

–  Refer to any instance variables of the class 
–  Invoke any method that has an implicit or explicit this for a 

calling object 

•  Static methods may invoke other static methods or refer 
to static variables and constants. 

 
•  A class definition may contain both static methods and 

non-static methods. 

53 



Static Fo  to Co Convert Example 
public class FtoC 
{ 
 public static double convert( double degreesF )   
  { return 5.0 / 9.0 * (degreesF – 32 ); } 

} 
 
 
public class F2CDemo 
{ 
 public static void main( String[ ] args ) 
 { 
  double degreesF = 100; 

 
  // Since convert is static, no object is needed 
  // The class name is used when convert is called 

 
  double degreesC = FtoC.convert( degreesF ); 
  System.out.println( degreesC ); 
 } 

} 

54 



main is a Static Method 

Note that the method header for main( ) is 
 

public static void main(String [] args) 
 

Being static has two effects: 
•  main can be executed without an object. 
•  “Helper” methods called by main must also 

be static.  

55 



Any Class Can Have a main( ) 

•  Every class can have a public static 
method name main( ). 

 

•  Java will execute main in whichever class 
is specified on the command line. 

 

   java <className> 
 

•  A convenient way to write test code for your 
class. 

56 



The Math Class 
•  The Math class provides a number of standard 

mathematical methods. 

–  Found in the java.lang package, so it does not 
require an import statement 

–  All of its methods and data are static. 
•  They are invoked with the class name Math instead of a 

calling object. 

–  The Math class has two predefined constants,  
 E (e, the base of the natural logarithm system) 

and PI (π, 3.1415 . . .). 
 

  area = Math.PI * radius * radius; 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

57 



Some Methods in the Class Math  
(Part 1 of 5) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

58 



Some Methods in the Class Math  
(Part 2 of 5) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

59 



Some Methods in the Class Math  
(Part 3 of 5) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

60 



Some Methods in the Class Math  
(Part 4 of 5) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

61 



Some Methods in the Class Math  
(Part 5 of 5) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

62 



Static Review 
•  Given the skeleton class definition below 
 

public class C { 
public int a = 0; 
public static int b = 1; 

 
public void f() { …} 
public static void g() {…} 

} 
 

•  Can body of f() refer to a? 
•  Can body of f() refer to b? 
•  Can body of g() refer to a? 
•  Can body of g() refer to b? 
•  Can f() call g()? 
•  Can g() call f()? 

For each, explain why or why not. 
 

63 



Wrapper Classes 
•  Wrapper classes  

–  Provide a class type corresponding to each of the primitive types 

–  Makes it possible to have class types that behave somewhat like 
primitive types 

–  The wrapper classes for the primitive types: 
 

byte, short, int, long, float, double, and char 
    are (in order) 

 Byte, Short, Integer, Long, Float, Double,  
and Character 

–  Wrapper classes also contain useful 
•  predefined constants 
•  static methods 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

64 



Constants and Static Methods 
 in Wrapper Classes 

•  Wrapper classes include constants that provide 
the largest and smallest values for any of the 
primitive number types. 

 

–  Integer.MAX_VALUE, Integer.MIN_VALUE, 
Double.MAX_VALUE, Double.MIN_VALUE, etc. 

•  The Boolean class has names for two constants 
of type Boolean. 
 

–  Boolean.TRUE  corresponds to true 
–   Boolean.FALSE corresponds to false 
 

of the primitive type boolean. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

65 



Constants and Static Methods  
in Wrapper Classes 

•  Some static methods convert a correctly formed string representation 
of a number to the number of a given type. 
–  The methods Integer.parseInt(), Long.parseLong(), 

Float.parseFloat(), and Double.parseDouble() 

 do this for the primitive types (in order) int, long, float, and double. 
 

•  Static methods convert from a numeric value to a string 
representation of the value. 

–  For example, the expression 

Double.toString(123.99); 
  

    returns the string value "123.99" 

•  The Character class contains a number of static methods that are 
useful for string processing. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

66 



Wrappers and 
Command Line Arguments 

•  Command line arguments are passed to main via 
its parameter conventionally named args. 

 

public static void main (String[ ] args) 
 

•  For example, if we execute our program as 
 

  java proj1.Project1 Bob 42 
 

 then args[0] = “Bob” and args[1] = “42”. 

•  We can use the static method Integer.parseInt( ) 
to change the argument “42” to an integer 
variable via 

  int age = Integer.parseInt( args[ 1 ] ); 
67 



Methods in the Class Character (1 of 3) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

68 



Methods in the Class Character (2 of 3) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

69 



Methods in the Class Character ( 3 of 3) 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

70 



Boxing 
•  Boxing:  The process of converting from a value 

of a primitive type to an object of its wrapper 
class. 
–  Create an object of the corresponding wrapper class 

using the primitive value as an argument 
–  The new object will contain an instance variable that 

stores a copy of the primitive value. 
 

Integer integerObject = new Integer(42); 

–  Unlike most other classes, a wrapper class does not 
have a no-argument constructor.  

–  The value inside a Wrapper class is immutable. 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

71 



Unboxing 
•  Unboxing:  The process of converting from an object of a 

wrapper class to the corresponding value of a primitive 
type. 
–  The methods for converting an object from the wrapper classes  
   Byte, Short, Integer, Long, Float,   

  Double, and Character  
 to their corresponding primitive type are (in order)  

 

   byteValue, shortValue, intValue,   
  longValue, floatValue, doubleValue,  
  and charValue. 

–  None of these methods take an argument. 
 

 int i = integerObject.intValue(); 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  
	
  All	
  rights	
  reserved	
  

72 



Automatic Boxing and Unboxing 
Starting with version 5.0, Java can automatically do boxing and unboxing for you. 
 

•  Boxing: 
 

Integer integerObject = 42; 

 
  rather than: 

 
Integer integerObject = new Integer(42); 
 

•  Unboxing: 
   

  int i = integerObject; 
 

   rather than: 
  
int i = integerObject.intValue(); 

Copyright	
  ©	
  2008	
  Pearson	
  Addison-­‐Wesley.	
  	
  
All	
  rights	
  reserved	
  

73 



Packages 

•  Java allows you to partition your classes into sets 
and subsets, called packages. 

•  You place your class into a package with the 
directive: 

 package myPackage; 
•  If the “package” directive is missing, the class is 

placed into the unnamed package 
•  A Java package is similar to a “namespace”: it 

implicitly prepends a prefix of your choice to all 
classes you define. 

74 



Packages 

•  You can refer to all objects via its fully-
qualified name, e.g.: 
myPackage.MyClass foo = new myPackage.MyClass(); 

•  Within a class definition, class references 
without explicit package name prefixes 
refer to other classes in your package 
– This is modified by importing other packages 

•  In addition to its use for namespaces, 
packages affect the function of some 
visibility modifiers (later) 

75 



Importing Packages 

•  Import single class by using: 
 import java.util.Random; 

•  Or, import many classes, with wildcard: 
 import java.util.*; 

–  Cannot “import java.*.*;” 
–  Importing is not recursive (e.g. java.* != java.util.*) 
–  Importing singly is preferred (why?) 

•  java.lang.* is already implicitly imported 
•  However, all other java.*… must be explicitly 

imported 

76 



Package Naming Conventions 

•  Initially, beginners use the unnamed 
package 

•  For simple, standalone applications, use 
simple one-token package names, e.g.: 
“proj1” (note lowercase) 

•  For packages to be deployed outside the 
organization, use inverse-domain-address-
like notation, e.g.: 
edu.brynmawr.cs.cmsc206.utilityPackage 

77 



Packages: Example 
 package proj3; 
import java.util.Random; 
public class MyClass { 

 // Stuff inside this class definition 
 public static int someMethod() { 
  Random rand = new Random(); 
  … 
 } 

} 
--------------------------------------------------------- 

 // No “package” directive, so in unnamed package 
// No “import” directive, so all class names must be full 
public class MyOtherClass { 

 // Stuff inside this class definition 
 public static int someMethod() { 
  proj3.MyClass myClassInst = new proj3.MyClass(); 
  java.util.Random rand = new java.util.Random(); 
  … 
 } 

} 

 

 

78 


