Review
- Images – an array of colors
- Color – RGBA
- Loading, modifying, updating pixels
- pixels[] as a 2D array
- Simple filters – tinting, grayscale, negative, sepia
- PImage class, fields and methods
- get() method and crumble
- tint() function – color and alpha filtering
- Creative image processing – Pointillism, other shapes

Medical Images

Image Processing in Manufacturing

What can you do with Image Processing?
- Inspect, Measure, and Count using Photos and Video
 http://www.youtube.com/watch?v=86sTNNWVhpg
- Image Processing Software
 http://www.youtube.com/watch?v=tWUp9mGnWSM

Thresholding for Image Segmentation
- Pixels below a cutoff value are set to black
- Pixels above a cutoff value are set to white

Obamicon
Example
- obamicon

Image Enhancement
- Color and intensity adjustment
- Histogram equalization

Histogram Equalization
- Increases the global contrast of images
- So that intensities are better distributed
- Reveals more details in photos that are over or under exposed
- Better views of bone structure in X-rays

Histogram Equalization
- Calculate color frequencies - count the number of times each pixel color appear in the image
- Calculate the cumulative distribution function (cdf) for each pixel color – the number of times all smaller color values appear in the image
- Normalize over (0, 255)

Convolution Filters (Area-based)
\[E' = w_1A + w_2B + w_3C + w_4D + w_5E + w_6F + w_7G + w_8H + w_9I \]
Identity
- No change

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Random Neighbor
- Copies randomly from one of the 8 neighbors, and itself

Example
- randomNeighbor

Average – smooth
- Set pixel to the average of all colors in the neighborhood
- Smoothes out areas of sharp changes.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

Sharpen – High Pass Filter
- Enhances the difference between neighboring pixels
- The greater the difference, the more change in the current pixel

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-2/3</td>
</tr>
<tr>
<td>-1</td>
<td>9</td>
<td>-1</td>
<td>-2/3</td>
<td>11/3</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-2/3</td>
</tr>
</tbody>
</table>

Blur – Low Pass Filter
- Softens significant color changes in image
- Creates intermediate colors

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>2/16</td>
<td>1/16</td>
</tr>
<tr>
<td>2/16</td>
<td>4/16</td>
<td>2/16</td>
</tr>
<tr>
<td>1/16</td>
<td>2/16</td>
<td>1/16</td>
</tr>
</tbody>
</table>
Example

- convolution

Dilation - Morphology

- Set pixel to the maximum color value within a neighborhood around the pixel
- Causes objects to grow in size.
- Brightens and fills in small holes

Erosion - Morphology

- Set pixel to the minimum color value within a neighborhood around the pixel
- Causes objects to shrink.
- Darkens and removes small objects

Feature Extraction - Region Detection

- Dilate and Erode
 - Open
 - Erode → dilate
 - Removes noise
 - Close
 - Dilate → Erode
 - Holes are closed

Erode + Dilate to Despeckle

Image Enhancement

- Denoise
 - Averaging
 - Median filter
Image Processing in Processing

- `tint()`: modulate individual color components
- `blend()`: combine the pixels of two images in a given manner
- `filter()`: apply an image processing algorithm to an image

Blend Command
```
img = loadImage("colony.jpg");
mask = loadImage("mask.png");
image(img, 0, 0);
blend(img, 0, 0, mask.width, mask.height, 0, 0, img.width, img.height, SUBTRACT);
```

BLEND linear interpolation of colours:
```
C = A*factor + B
```

ADD additive blending with white clip:
```
C = min(A*factor + B, 255)
```

SUBTRACT subtractive blending with black clip:
```
C = max(A*factor - B, 0)
```

DARKEST only the darkest colour succeeds:
```
C = max(A*factor, B)
```

LIGHTEST only the lightest colour succeeds:
```
C = min(A*factor, B)
```

DIFFERENCE subtract colors from underlying image.

EXCLUSION similar to DIFFERENCE, but less extreme.

MULTIPLY Multiply the colors, result will always be darker.

SCREEN Opposite multiply, uses inverse values of the colors.

OVERLAY Mix of MULTIPLY and SCREEN. Multiples dark values, and screens light values.

HARD_LIGHT SCREEN when greater than 50% gray, MULTIPLY when lower.

SOFT_LIGHT Mix of DARKEST and LIGHTEST. Works like OVERLAY, but not as harsh.

DODGE Lightens light tones and increases contrast, ignores darks.

BURN Darker areas are applied, increasing contrast, ignores lights.

Filter Command
```
// Threshold
PImage img;
void setup() {
  img = loadImage("myImage.jpg");
  size(img.width, img.height);
  image(img, 0, 0);
}
void draw() {
  filter(THRESHOLD, 0.5);
}
```

THRESHOLD converts the image to black and white pixels depending if they are above or below the threshold defined by the level parameter.

GRAY converts any colors in the image to grayscale equivalents.

INVERT sets each pixel to its inverse value.

POSTERIZE limits each channel of the image to the number of colors specified as the level parameter.

BLUR executes a Gaussian blur with the level parameter specifying the extent of the blurring.

OPAQUE sets the alpha channel to entirely opaque.

ERODE reduces the light areas with the amount defined by the level parameter.

DILATE increases the light areas with the amount defined by the level parameter.

Image Processing Applications

Manual Colony Counter
```
http://www.youtube.com/watch?v=7B-9Wf6pENQ
```

![Image Processing Examples](image.png)
Measuring Confluency in Cell Culture Biology

- Refers to the coverage of a dish or flask by the cells
- 100% confluency = completely covered

- Image Processing Method
 1. Mask off unimportant parts of image
 2. Threshold image
 3. Count pixels of certain color

Filter: Threshold

Count pixels to quantify: 5.3% confluency

Blend: Subtract

Vision Guided Robotics Colony Picking

Predator algorithm for object tracking with learning
http://www.youtube.com/watch?v=1GhNXHCQGsM

Video Processing, with Processing
http://www.youtube.com/watch?v=rKhbUjVyKlc