Notes from Quiz 4
- Declare variables once
- Once declared, reference by name
- Do not keep redeclaring them!
- Arrays need loops
- Array type has [] following the basic item type
 - int[], float[], Square[]
- Loop indices and array indices should be integers
 - nums[i] = 2*nums[i];
 - nums[i] = nums[2*i];
- Constructor has no return type
- Constructor should take parameters
- Function parameters and return types!

Odds and Ends
- Load an image ONCE
 - loadImage() in setup() (it's sloooooow)
 - use image() to render the image obj in draw()
- Constructor overload
 - We are going to call your constructor(s)!
- Transformations are drawing-related commands!
- Drawing does not depend on global variables
 - If your fish needs anything, it should be stored in the object

Review
- Recursion (recursive function)
 - a function that calls itself
 - base case
 - reduction of the work to a smaller instance
- Rotation ccw in Processing – negative angle

Creating a maze, recursively
1. Start with a rectangular region defined by its upper left and lower right corners
2. Divide the region at a random location through its more narrow dimension
3. Add an opening at a random location
4. Repeat on two rectangular subregions

Examples
- recursive sum
- recursive sum with array
- recursive findMax
Lindenmayer System
- A formal grammar developed to model the development of biological systems
- Generates strings that represent movements
- When traced in the plane, produce remarkable lifelike plant systems
- Components
 - An alphabet (a set of symbols)
 - An axiom or start string
 - A rule set that defines substitutions

L-system Example
- Alphabet: (A, B)
- Axiom: A
- Rules
 1. (A → AB)
 2. (B → A)
- Generation:
 1. A
 2. AB
 3. ABA
 4. ABAAB
 5. ABAABABA

Turtle Graphics
- Imaginary turtle with a pen
- Moves in the plane
 - Forward
 - Turn left
 - Turn right
- Traces with the pen as it moves
- Can put the pen up or down
 - Pen up: no trace
 - Pen down: trace

L-systems Example
- Alphabet: (F)
- Axiom: F
- Rules
 1. (F → F+F−F−F+F)
- Interpretations:
 1. F Forward (pen down)
 2. + Turn left (pen up)
 3. − Turn right (pen up)

3 and 5 Iterations

Koch Snowflake
- Alphabet: (F)
- Axiom: F++F++F
- Rules
 1. (F → F−F−F+F)
Quadratic Flake
- Alphabet: \(\{F\} \)
- Axiom: \(F+F+F+F \)
- Rules:
 1. \(F \rightarrow F+F-F-F+F+F+F-F \)

Heighway Dragon (8 and 11 iterations)

Plants
- Alphabet: \(\{F\} \)
- Axiom: \(F \)
- Rules:
 1. \(F \rightarrow F[-F][+F][F] \)
Recursive Subdivision
- Decide on a split ratio
- Find the sum of all n values
- Sort the values
- Select the first k values that sum up to the split ratio (\(\leq 0.6 \times \text{sum}\))
- Allocate these k values to the corresponding split and the remaining n-k to the other
- Recurse when any split contains more than one value

Obama speach