Review

• Variables
• Variable types
• Integer division
• Conditionals: if - else if - else
• Motion simulation

Program Structure

• If code is to be executed only once
 – Put it in setup() not in draw()
 – Leave it in draw(), but call noLoop() in setup()
• Remove draw()?
 – All keyboard and mouse callbacks need the event loop
• Variable scope
 – variables are available/accessible only in the function
 where it is declared
 – Global variables
 – declared outside of any function
 – available to all

```
int x, y;
void setup() {
    }
void draw() {
    }
```

Principals of Animation

• Think of each iteration of the draw() loop as
drawing a new key frame
• In each frame, you animate an object by
 – Erasing the old canvas (background() call)
 – Drawing the object again with a new position
 – Updates if any
• Typical call sequence
 – new background
 – position = position + velocity
 – draw object
 – velocity = velocity + acceleration

Saving a Screen Shot

• save(filename);
• What if your sketch has animation or
 interaction?
 – you don’t have a clear place in your code to put the save
 command
• Program the keyPressed interaction instead

```
void keyPressed() {
    if (key == 's') {
        save("screenshot.jpg");
    }
}
```

Expressions

• Collections of data values and variables related by
 operators and function calls, and grouped by
 parentheses.
• Expressions are automatically evaluated and
 replaced by the final evaluated value.
• Expressions can be assigned to variables using “=”
 – Expression is always on right
 – Variable name is always on left

```
variable_name = expression;
```

Some Built-in Mathematical Functions

- sin(x), cos(x), tan(x), asin(x), ...
- abs(x), exp(x), pow(x, y), log(x), sqrt(x), ...
- max(x1, x2), min(x1, x2), floor(x), ceil(x), ...
- dist(x1, y1, x2, y2) ➔ distance between two points
- norm(value, low, high) ➔ normalizes a value to [0-1]

... and many more, all of which can be included in an expression.
Operators

+, -, *, / and ...

i++; equivalent to i = i + 1;
i += 2; equivalent to i = i + 2;
i-=; equivalent to i = i - 1;
i -= 3; equivalent to i = i - 3;
i *= 2; equivalent to i = i * 2;
i /= 4; equivalent to i = i / 4;
i % 3; the remainder after i is divided by 3 (modulo)

Evaluating Expressions

1 + 2
pow(sin(x), 2) + pow(cos(x), 2) == 1.0
max(1, 2, 3) >= 2
floor(2.9) == ceil(1.8)

Iteration

Repetition of a program block
• Iterate when a block of code is to repeat multiple times.

Options
• The while-loop
• The for-loop

Iteration: while-loop

while (boolean_expression) {
statements;
 // continue;
 // break;
}

• Statements are repeatedly executed as long as the boolean expression remains true;
• To break out of a while loop, call break;
 – usually in conjunction with an if statement
• To skip execution of statements and start another iteration, call continue;

The Event Loop

• Although the draw() loop is certainly a loop, you should think of it as painting a particular still frame for a particular time step
• If you want anything repeated in this single frame, you will need a loop
Iteration: for-loop

for (initialization; continuation_test; increment) {
 statements;
 // continue;
 // break;
}

• Initialization, continuation test and increment commands are part of statement
• Known as a definite loop because you usually know exactly how many times it will iterate

```java
for (int i = 0; i < 10; i++) {
  print(i);
}
println();
```

```java
for (int i = 0; i < 10; i++) {
  if (i % 2 == 1) continue;
  print(i);
}
println();
```

```java
void setup() {
  size(500, 500);
  float diameter = 500;
  while (diameter > 1) {
    ellipse(250, 250, diameter, diameter);
    diameter = diameter - 10;
  }
}
```

```java
void setup() {
  size(500, 500);
  for (float diameter = 500; diameter > 1; diameter -= 10) {
    ellipse(250, 250, diameter, diameter);
  }
}
```