Simple Data Visualization & Objects

Quiz 2

```java
if (x < 100) {
    if (y < 10) {
        println("good job!");
    } else if (x < 50) {
        if (y > 10) {
            println("great job!");
        } else {
            println("what happened?"瘙
        }
    } else {
        if (y > 7) {
            println("not bad!");
        } else {
            println("nice try...");
        }
    }
}
```

Review

- Array
 - `int[]` diameters = new `int[10]`;
 - `int[]` diameters[0], diameters[2], diameters[9];
 - diameters.length

 - Indexing starts at 0
 - A way to have a collection of variables instead of individual ones

lab02 #1

```java
double[] values = {0.6, 0.2, 0.3, 0.0, 0.5, 0.3, 0.7};
int limit = values.length/2;
for (int k=0; k<limit; k++) {
    double tmp = values[k];
    values[k] = values[values.length-k-1];
    values[values.length-k-1] = tmp;
}
println(values);
println(values[0]);
```

Built-in Array Functions

- `append(array, item)`
 - returns a new array expanded by one and add item to end
- `expand(array, newSize)`
 - returns a new array with size increased to newSize
- `shorten(array)`
 - returns a new array shortened by one
- `concat(array1, array2)`
 - returns a new array that is the concatenation of array1 and array2
- `subset(array, offset[, length])`
 - returns a subset of array starting at offset and proceeding for length (or end)
- `splice(array, value[array2, index] or`)
 - returns a new array with value or array2 inserted at index
- `sort(array)`
 - returns a new array sorted numerically or alphabetically
- `reverse(array)`
 - returns a new array with all elements reversed in order

Recall

```
// convert from polar to cartesian coordinates
float x = center_x + cos(angle_Offset + angle)*radius;
float y = center_y + sin(angle_OFFSET + angle)*radius;

// draw a point vertex(x, y);
```

repeat for radial adding angle/2 to the expression inside sin and cos
Plots

- Line Charts
- Bar graphs
- Functions

Snowfall in Bryn Mawr, PA

<table>
<thead>
<tr>
<th>Date</th>
<th>Snowfall in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 8</td>
<td>0.2</td>
</tr>
<tr>
<td>Feb 9</td>
<td>0.3</td>
</tr>
<tr>
<td>Feb 10</td>
<td>0.4</td>
</tr>
<tr>
<td>Feb 11</td>
<td>0.0</td>
</tr>
<tr>
<td>Feb 12</td>
<td>0.2</td>
</tr>
<tr>
<td>Feb 13</td>
<td>0.0</td>
</tr>
<tr>
<td>Feb 14</td>
<td>0.0</td>
</tr>
<tr>
<td>Feb 15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Basic Visualization

- Given an array of data (values)
  ```java
  float[] snowfall = { 0.20, 0.30, 0.40, 0.00, 0.20, 0.00, 0.00, 1.00 };
  ```
- How do we visualize?
 - plot each value?
 - connect the plotted points with lines (line chart)?
 - draw rectangles with each value as height (bar graph)

Example Bar Chart

- snowViz

Let's plot \(\sin(x) \) (with lines or points)

- Problem: Plot the graph of the function \(y = \sin(x) \)
- This is a continuous function. How do we plot each point?
- Let's start with plotting \(x \) and \(y \) for one value of \(x \)
- \(x = \pi/4, y = \sin(x) = 0.707106781 \)
- Let's first draw our axes with the \(x \) and \(y \) axis centered on width/2,height/2
  ```java
  line(0,height/2,width,height/2);
  line(width/2,0,width/2,height);
  ```
- Where should \(\pi/4 \) (45 degrees) be?

Direct Example

- Set size of canvas
- define axis center locations
- define tick marks
- plot \(x \) and \(y \) axis
- plot a sample point at every pixel in the \(x \) axis from -360 degrees to 360 degrees
Indirect Example

- Sample the function to plot 720 points.
 - save x values in one array
 - save y values in another array
- Call a function void plot(float[] x, float[] y)
 - the plot function
 - creates x and y axes
 - plots each point in x and y using a for loop.

What is an Object?

- An object is an instance of a class.
- What is an instance?
 - An instance is a distinct example of the class that
 - is in memory
 - has specific assignments for the variables declared by
 the class it represents.
 - has functionality based on the class.
- What is a class?
 - A complex data type.
 - The design for objects of its type.

Defining Your Own Object with Classes

- Classes are blueprints or prototypes for new objects
- Classes define all field and method declarations
 ... which are repeated for each new object created
- Classes DO NOT set the data values stored in fields
 ... but they likely determine how
- Using a class to create a new object is called instantiating an object
 ... creating a new object instance of the class
- Classes often model real-world items

Class vs. Object

[Diagram of Cookie Cutter (the class) and The Cookies (the objects)]