

Computing: It takes time!

Doug Blank
Introduction to Computing

Bryn Mawr College
Fall 2011

Not all Algorithms are the Same

● Computing something (anything) takes some
time/energy

● Different algorithms may compute something in
very different ways

● In order to pick the “best” algorithm, we need a
way to measure and compare them

● We count a rough measure of “instructions” (for
example, comparisons) for working on a
problem of length N

Not all Algorithms are the Same

● We throw out all but the “dominating” factor
● We call this the “Order of the Algorithm”, or

Big-O
● Represented as O(...)
● O(N) – means we do something once per item
● O(2N) – means we do something twice per item

● (But N dominates 2, so we can ignore the 2)

● O(1) – means we do something in constant time
(it doesn't depend on the number of items)

Not all Algorithms are the Same

● O(N2) – means that for every item, we do
something for every item

● O(N log N) – means that for every item, we do
something log N times

Sorting

>>> L = [5, 2, 8, 1, 6, 3, 1, 9]
>>> sort(L)
[1, 1, 2, 3, 5, 6, 8, 9]

N2 Sort

def sort1(L):
 for i in range(len(L) - 1):
 for j in range(i, len(L)):
 if L[i] > L[j]:
 L[i], L[j] = L[j], L[i]
 return L

Merge Sort

def sort2(L):
 if len(L) < 2: return L
 return merge(sort2(L[:len(L)//2]),
 sort2(L[len(L)//2:]))

Merge Sort
def merge(L1, L2):
 retval = []
 p1 = 0
 p2 = 0
 while p1 < len(L1) and p2 < len(L2):
 if L1[p1] < L2[p2]:
 retval.append(L1[p1])
 p1 += 1
 else:
 retval.append(L2[p2])
 p2 += 1
 if p1 < len(L1):
 retval = retval + L1[p1:]
 else:
 retval = retval + L2[p2:]
 return retval

n, n log(n), and n2

Big O Terms

●O(n) – linear; time increases linearly with each
additional item. Excellent!

●O(n2) – exponential; time increases exponential
with each additional item. Terrible!

●O(1) – constant time; time does not change with
each additional item. Magical! Can't do better.

●O(log(n)) – logarithmic time; time increases as
the log of items. Almost perfect!

●O(n * log(n)) – linearithmic; Best choice, often.

Another Sort

def sort3(L):
 while True:
 swapped = False
 for i in range(len(L) - 2):
 if L[i] > L[i + 1]:
 L[i], L[i + 1] = L[i + 1], L[i]
 swapped = True
 print(i, i + 1)
 if not swapped:
 return

Bubble Sort

def sort3(L):
 while True:
 swapped = False
 for i in range(len(L) - 2):
 if L[i] > L[i + 1]:
 L[i], L[i + 1] = L[i + 1], L[i]
 swapped = True
 print(i, i + 1)
 if not swapped:
 return

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

